

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	PDF optimization
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Online deployments
	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API	Example	Parent process requirements
	Logging
	Progress monitoring
	Standard output
	Exceptions

	Plugins
	API reference
	Design notes
	Contributing guidelines
	Maintainer notes

 ocrmypdf

 	
	Using the OCRmyPDF API
	
 Edit on GitHub

Using the OCRmyPDF API¶

OCRmyPDF originated as a command line program and continues to have this
legacy, but parts of it can be imported and used in other Python
applications.

Some applications may want to consider running ocrmypdf from a
subprocess call anyway, as this provides isolation of its activities.

Example¶

OCRmyPDF provides one high-level function to run its main engine from an
application. The parameters are symmetric to the command line arguments
and largely have the same functions.

import ocrmypdf

if __name__ == '__main__': # To ensure correct behavior on Windows and macOS
 ocrmypdf.ocr('input.pdf', 'output.pdf', deskew=True)

With some exceptions, all of the command line arguments are available
and may be passed as equivalent keywords.

A few differences are that verbose and quiet are not available.
Instead, output should be managed by configuring logging.

Parent process requirements¶

The ocrmypdf.ocr() function runs OCRmyPDF similar to command line
execution. To do this, it will:

	create worker processes or threads

	manage the signal flags of its worker processes

	execute other subprocesses (forking and executing other programs)

The Python process that calls ocrmypdf.ocr() must be sufficiently
privileged to perform these actions.

There currently is no option to manage how jobs are scheduled other
than the argument jobs= which will limit the number of worker
processes.

Creating a child process to call ocrmypdf.ocr() is suggested. That
way your application will survive and remain interactive even if
OCRmyPDF fails for any reason. For example:

from multiprocessing import Process

def ocrmypdf_process():
 ocrmypdf.ocr('input.pdf', 'output.pdf')

def call_ocrmypdf_from_my_app():
 p = Process(target=ocrmypdf_process)
 p.start()
 p.join()

Programs that call ocrmypdf.ocr() should also install a SIGBUS signal
handler (except on Windows), to raise an exception if access to a memory
mapped file fails. OCRmyPDF may use memory mapping.

ocrmypdf.ocr() will take a threading lock to prevent multiple runs of itself
in the same Python interpreter process. This is not thread-safe, because of how
OCRmyPDF’s plugins and Python’s library import system work. If you need to parallelize
OCRmyPDF, use processes.

Warning

On Windows and macOS, the script that calls ocrmypdf.ocr() must be
protected by an “ifmain” guard (if __name__ == '__main__'). If you do
not take at least one of these steps, process semantics will prevent
OCRmyPDF from working correctly.

Logging¶

OCRmyPDF will log under loggers named ocrmypdf. In addition, it
imports pdfminer and PIL, both of which post log messages under
those logging namespaces.

You can configure the logging as desired for your application or call
ocrmypdf.configure_logging() to configure logging the same way
OCRmyPDF itself does. The command line parameters such as --quiet
and --verbose have no equivalents in the API; you must use the
provided configuration function or do configuration in a way that suits
your use case.

Progress monitoring¶

OCRmyPDF uses the rich package to implement its progress bars.
ocrmypdf.configure_logging() will set up logging output to
sys.stderr in a way that is compatible with the display of the
progress bar. Use ocrmypdf.ocr(...progress_bar=False) to disable
the progress bar.

Standard output¶

OCRmyPDF is strict about not writing to standard output so that
users can safely use it in a pipeline and produce a valid output
file. A caller application will have to ensure it does not write to
standard output either, if it wants to be compatible with this
behavior and support piping to a file.

Exceptions¶

OCRmyPDF may throw standard Python exceptions, ocrmypdf.exceptions.*
exceptions, some exceptions related to multiprocessing, and
KeyboardInterrupt. The parent process should provide an exception
handler. OCRmyPDF will clean up its temporary files and worker processes
automatically when an exception occurs.

When OCRmyPDF succeeds conditionally, it returns an integer exit code.

 Previous
 Next

 © Copyright 2023, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..
 Revision 2005f622.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v16.0.1post1
	v16.0.1
	v16.0.0
	v15.4.4
	v15.4.3
	v15.4.2
	v15.4.1
	v15.4.0
	v15.3.1
	v15.3.0
	v15.2.0
	v15.1.0
	v15.0.2
	v15.0.1
	v15.0.0.post1
	v14.4.0
	v14.3.0
	v14.2.1
	v14.2.0
	v14.1.0
	v14.0.4
	v14.0.3
	v14.0.2
	v14.0.1
	v14.0.0
	v13.7.0
	v13.6.2
	v13.6.1
	v13.6.0
	v13.5.0
	v13.4.7
	v13.4.6
	v13.4.5
	v13.4.4
	v13.4.3
	v13.4.2
	v13.4.1
	v13.4.0
	v13.3.0
	v13.2.0
	v13.1.1
	v13.1.0
	v13.0.0
	v12.7.2
	v12.7.1
	v12.7.0
	v12.6.0
	v12.5.0
	v12.4.0
	v12.3.3
	v12.3.2
	v12.3.1
	v12.3.0
	v12.2.0
	v12.1.0
	v12.0.3
	v12.0.2
	v12.0.1
	v12.0.0
	v11.7.3
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

