

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	OCRmyPDF Docker image
	Advanced features
	Batch processing	Batch jobs
	Directory trees	Sample script
	API
	Synology DiskStations
	Huge batch jobs

	Hot (watched) folders	Caveats
	Alternatives

	macOS Automator

	PDF security issues
	Common error messages

 ocrmypdf

 	Docs »
	Batch processing
	

 Edit on GitHub

Batch processing¶

This article provides information about running OCRmyPDF on multiple files or configuring it as a service triggered by file system events.

Batch jobs¶

Consider using the excellent GNU Parallel to apply OCRmyPDF to multiple files at once.

Both parallel and ocrmypdf will try to use all available processors. To maximize parallelism without overloading your system with processes, consider using parallel -j 2 to limit parallel to running two jobs at once.

This command will run all ocrmypdf all files named *.pdf in the current directory and write them to the previous created output/ folder. It will not search subdirectories.

The --tag argument tells parallel to print the filename as a prefix whenever a message is printed, so that one can trace any errors to the file that produced them.

parallel --tag -j 2 ocrmypdf '{}' 'output/{}' ::: *.pdf

OCRmyPDF automatically repairs PDFs before parsing and gathering information from them.

Directory trees¶

This will walk through a directory tree and run OCR on all files in place, printing the output in a way that makes

find . -printf '%p' -name '*.pdf' -exec ocrmypdf '{}' '{}' \;

Alternatively, with a docker container (mounts a volume to the container where the PDFs are stored):

find . -printf '%p' -name '*.pdf' -exec docker run --rm -v <host dir>:<container dir> jbarlow83/ocrmypdf-alpine '<container dir>/{}' '<container dir>/{}' \;

This only runs one ocrmypdf process at a time. This variation uses find to create a directory list and parallel to parallelize runs of ocrmypdf, again updating files in place.

find . -name '*.pdf' | parallel --tag -j 2 ocrmypdf '{}' '{}'

Sample script¶

This user contributed script also provides an example of batch processing.

#!/usr/bin/env python3
Walk through directory tree, replacing all files with OCR'd version
Contributed by DeliciousPickle@github

import logging
import os
import subprocess
import sys

script_dir = os.path.dirname(os.path.realpath(__file__))
print(script_dir + '/ocr-tree.py: Start')

if len(sys.argv) > 1:
 start_dir = sys.argv[1]
else:
 start_dir = '.'

if len(sys.argv) > 2:
 log_file = sys.argv[2]
else:
 log_file = script_dir + '/ocr-tree.log'

logging.basicConfig(
 level=logging.INFO, format='%(asctime)s %(message)s',
 filename=log_file, filemode='w')

for dir_name, subdirs, file_list in os.walk(start_dir):
 logging.info('\n')
 logging.info(dir_name + '\n')
 os.chdir(dir_name)
 for filename in file_list:
 file_ext = os.path.splitext(filename)[1]
 if file_ext == '.pdf':
 full_path = dir_name + '/' + filename
 print(full_path)
 cmd = ["ocrmypdf", "--deskew", filename, filename]
 logging.info(cmd)
 proc = subprocess.run(
 cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
 result = proc.stdout
 if proc.returncode == 6:
 print("Skipped document because it already contained text")
 elif proc.returncode == 0:
 print("OCR complete")
 logging.info(result)

API¶

OCRmyPDF is currently supported as a command line interface. This means that even if you are using OCRmyPDF in a Python script, you should run it in a subprocess rather importing the ocrmypdf package.

The reason for this limitation is that the ruffus library that OCRmyPDF depends on is unfortunately not reentrant. OCRmyPDF works by defining each operation it does as a ruffus task that takes one or more files as input and generates one or more files as output. As such ruffus is fairly fundamental.

(If you find individual functions implemented in OCRmyPDF useful (such as ocrmypdf.pdfinfo), you can use these if you wish to.)

Synology DiskStations¶

Synology DiskStations (Network Attached Storage devices) can run the Docker image of OCRmyPDF if the Synology Docker package is installed. Attached is a script to address particular quirks of using OCRmyPDF on one of these devices.

This is only possible for x86-based Synology products. Some Synology products use ARM or Power processors and do not support Docker. Further adjustments might be needed to deal with the Synology’s relatively limited CPU and RAM.

#!/bin/env python3
Contributed by github.com/Enantiomerie

script needs 2 arguments
1. source dir with *.pdf - default is location of script
2. move dir where *.pdf and *_OCR.pdf are moved to

import logging
import os
import subprocess
import sys
import time
import shutil

script_dir = os.path.dirname(os.path.realpath(__file__))
timestamp = time.strftime("%Y-%m-%d-%H%M_")
log_file = script_dir + '/' + timestamp + 'ocrmypdf.log'
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', filename=log_file, filemode='w')

if len(sys.argv) > 1:
 start_dir = sys.argv[1]
else:
 start_dir = '.'

for dir_name, subdirs, file_list in os.walk(start_dir):
 logging.info('\n')
 logging.info(dir_name + '\n')
 os.chdir(dir_name)
 for filename in file_list:
 file_ext = os.path.splitext(filename)[1]
 if file_ext == '.pdf':
 full_path = dir_name + '/' + filename
 file_noext = os.path.splitext(filename)[0]
 timestamp_OCR = time.strftime("%Y-%m-%d-%H%M_OCR_")
 filename_OCR = timestamp_OCR + file_noext + '.pdf'
 docker_mount = dir_name + ':/home/docker'
create string for pdf processing
diskstation needs a user:group docker:docker. find uid:gid of your diskstation docker:docker with id docker.
use this uid:gid in -u flag
rw rights for docker:docker at source dir are also necessary
the script is processed as root user via chron
 cmd = ['docker', 'run', '--rm', '-v', docker_mount, '-u=1030:65538', 'jbarlow83/ocrmypdf', , '--deskew' , filename, filename_OCR]
 logging.info(cmd)
 proc = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
 result = proc.stdout.read()
 logging.info(result)
 full_path_OCR = dir_name + '/' + filename_OCR
 os.chmod(full_path_OCR, 0o666)
 os.chmod(full_path, 0o666)
 full_path_OCR_archive = sys.argv[2]
 full_path_archive = sys.argv[2] + '/no_ocr'
 shutil.move(full_path_OCR,full_path_OCR_archive)
 shutil.move(full_path, full_path_archive)
logging.info('Finished.\n')

Huge batch jobs¶

If you have thousands of files to work with, contact the author. Consulting work related to OCRmyPDF helps fund this open source project and all inquiries are appreciated.

Hot (watched) folders¶

To set up a “hot folder” that will trigger OCR for every file inserted, use a program like Python watchdog (supports all major OS).

One could then configure a scanner to automatically place scanned files in a hot folder, so that they will be queued for OCR and copied to the destination.

pip install watchdog

watchdog installs the command line program watchmedo, which can be told to run ocrmypdf on any .pdf added to the current directory (.) and place the result in the previously created out/ folder.

cd hot-folder
mkdir out
watchmedo shell-command \
 --patterns="*.pdf" \
 --ignore-directories \
 --command='ocrmypdf "${watch_src_path}" "out/${watch_src_path}" ' \
 . # don't forget the final dot

For more complex behavior you can write a Python script around to use the watchdog API.

On file servers, you could configure watchmedo as a system service so it will run all the time.

Caveats¶

	watchmedo may not work properly on a networked file system, depending on the capabilities of the file system client and server.
	This simple recipe does not filter for the type of file system event, so file copies, deletes and moves, and directory operations, will all be sent to ocrmypdf, producing errors in several cases. Disable your watched folder if you are doing anything other than copying files to it.
	If the source and destination directory are the same, watchmedo may create an infinite loop.
	On BSD, FreeBSD and older versions of macOS, you may need to increase the number of file descriptors to monitor more files, using ulimit -n 1024 to watch a folder of up to 1024 files.

Alternatives¶

	Watchman is a more powerful alternative to watchmedo.

macOS Automator¶

You can use the Automator app with macOS, to create a Workflow or Quick Action. Use a Run Shell Script action in your workflow. In the context of Automator, the PATH may be set differently your Terminal’s PATH; you may need to explicitly set the PATH to include ocrmypdf. The following example may serve as a starting point:

You may customize the command sent to ocrmypdf.

 Next

 Previous

 © Copyright 2019, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0.

 Revision 12769b96.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: v8.3.2

 	Versions
	latest
	stable
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

