

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	PDF optimization
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Online deployments
	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins
	API reference	ocrmypdf	PageContext	PageContext.get_path()
	PageContext.options
	PageContext.origin
	PageContext.pageinfo
	PageContext.pageno
	PageContext.plugin_manager

	PdfContext	PdfContext.get_page_context_args()
	PdfContext.get_page_contexts()
	PdfContext.get_path()
	PdfContext.options
	PdfContext.origin
	PdfContext.pdfinfo
	PdfContext.plugin_manager

	Verbosity	Verbosity.debug
	Verbosity.debug_all
	Verbosity.default
	Verbosity.quiet

	configure_logging()
	ocr()

	ocrmypdf.exceptions	BadArgsError	BadArgsError.exit_code

	ColorConversionNeededError	ColorConversionNeededError.message

	DigitalSignatureError	DigitalSignatureError.message

	DpiError	DpiError.exit_code

	EncryptedPdfError	EncryptedPdfError.exit_code
	EncryptedPdfError.message

	ExitCode	ExitCode.already_done_ocr
	ExitCode.bad_args
	ExitCode.child_process_error
	ExitCode.ctrl_c
	ExitCode.encrypted_pdf
	ExitCode.file_access_error
	ExitCode.input_file
	ExitCode.invalid_config
	ExitCode.invalid_output_pdf
	ExitCode.missing_dependency
	ExitCode.ok
	ExitCode.other_error
	ExitCode.pdfa_conversion_failed

	ExitCodeException	ExitCodeException.exit_code
	ExitCodeException.message

	InputFileError	InputFileError.exit_code

	MissingDependencyError	MissingDependencyError.exit_code

	OutputFileAccessError	OutputFileAccessError.exit_code

	PriorOcrFoundError	PriorOcrFoundError.exit_code

	SubprocessOutputError	SubprocessOutputError.exit_code

	TaggedPDFError	TaggedPDFError.message

	TesseractConfigError	TesseractConfigError.exit_code
	TesseractConfigError.message

	UnsupportedImageFormatError	UnsupportedImageFormatError.exit_code

	ocrmypdf.helpers
	ocrmypdf.hocrtransform	HocrTransform	HocrTransform.baseline()
	HocrTransform.element_coordinates()
	HocrTransform.polyval()
	HocrTransform.pt_from_pixel()
	HocrTransform.replace_unsupported_chars()
	HocrTransform.to_pdf()

	HocrTransformError
	Rect	Rect.x1
	Rect.x2
	Rect.y1
	Rect.y2

	ocrmypdf.pdfa	file_claims_pdfa()
	generate_pdfa_ps()

	ocrmypdf.quality	OcrQualityDictionary	OcrQualityDictionary.measure_words_matched()

	ocrmypdf.subprocess	check_external_program()
	get_version()
	run()
	run_polling_stderr()

	Design notes
	Contributing guidelines
	Maintainer notes

 ocrmypdf

 	
	API reference
	
 Edit on GitHub

API reference¶

This page summarizes the rest of the public API. Generally speaking this
should be mainly of interest to plugin developers.

ocrmypdf¶

	
class ocrmypdf.PageContext(pdf_context: PdfContext, pageno)¶
	Holds our context for a page.

Must be pickle-able, so stores only intrinsic/simple data elements or those
capable of their serializing themselves via __getstate__.

	
get_path(name: str) → Path¶
	Generate a Path for a file that is part of processing this page.

The path will be based in a common temporary folder and have a prefix based
on the page number.

	
options: Namespace¶
	The specified options for processing this PDF.

	
origin: Path¶
	The filename of the original input file.

	
pageinfo: PageInfo¶
	Information on this page.

	
pageno: int¶
	This page number (zero-based).

	
plugin_manager: PluginManager¶
	PluginManager for processing the current PDF.

	
class ocrmypdf.PdfContext(options: Namespace, work_folder: Path, origin: Path, pdfinfo: PdfInfo, plugin_manager)¶
	Holds the context for a particular run of the pipeline.

	
get_page_context_args() → Iterator[tuple[PageContext]]¶
	Get all PageContext for this PDF packaged in tuple for args-splatting.

	
get_page_contexts() → Iterator[PageContext]¶
	Get all PageContext for this PDF.

	
get_path(name: str) → Path¶
	Generate a Path for an intermediate file involved in processing.

The path will be in a temporary folder that is common for all processing
of this particular PDF.

	
options: Namespace¶
	The specified options for processing this PDF.

	
origin: Path¶
	The filename of the original input file.

	
pdfinfo: PdfInfo¶
	Detailed data for this PDF.

	
plugin_manager: PluginManager¶
	PluginManager for processing the current PDF.

	
class ocrmypdf.Verbosity(value)¶
	Verbosity level for configure_logging.

	
debug = 1¶
	Output ocrmypdf debug messages

	
debug_all = 2¶
	More detailed debugging from ocrmypdf and dependent modules

	
default = 0¶
	Default level of logging

	
quiet = -1¶
	Suppress most messages

	
ocrmypdf.configure_logging(verbosity: Verbosity, *, progress_bar_friendly: bool = True, manage_root_logger: bool = False, plugin_manager: pluggy.PluginManager | None = None)¶
	Set up logging.

Before calling ocrmypdf.ocr(), you can use this function to
configure logging if you want ocrmypdf’s output to look like the ocrmypdf
command line interface. It will register log handlers, log filters, and
formatters, configure color logging to standard error, and adjust the log
levels of third party libraries. Details of this are fine-tuned and subject
to change. The verbosity argument is equivalent to the argument
--verbose and applies those settings. If you have a wrapper
script for ocrmypdf and you want it to be very similar to ocrmypdf, use this
function; if you are using ocrmypdf as part of an application that manages
its own logging, you probably do not want this function.

If this function is not called, ocrmypdf will not configure logging, and it
is up to the caller of ocrmypdf.ocr() to set up logging as it wishes using
the Python standard library’s logging module. If this function is called,
the caller may of course make further adjustments to logging.

Regardless of whether this function is called, ocrmypdf will perform all of
its logging under the "ocrmypdf" logging namespace. In addition,
ocrmypdf imports pdfminer, which logs under "pdfminer". A library user
may wish to configure both; note that pdfminer is extremely chatty at the
log level logging.INFO.

This function does not set up the debug.log log file that the command
line interface does at certain verbosity levels. Applications should configure
their own debug logging.

	Parameters:
		verbosity – Verbosity level.

	progress_bar_friendly – If True (the default), install a custom log handler
that is compatible with progress bars and colored output.

	manage_root_logger – Configure the process’s root logger.

	plugin_manager – The plugin manager, used for obtaining the custom log handler.

	Returns:
	The toplevel logger for ocrmypdf (or the root logger, if we are managing it).

	
ocrmypdf.ocr(input_file: PathOrIO, output_file: PathOrIO, *, language: Iterable[str] | None = None, image_dpi: int | None = None, output_type: str | None = None, sidecar: StrPath | None = None, jobs: int | None = None, use_threads: bool | None = None, title: str | None = None, author: str | None = None, subject: str | None = None, keywords: str | None = None, rotate_pages: bool | None = None, remove_background: bool | None = None, deskew: bool | None = None, clean: bool | None = None, clean_final: bool | None = None, unpaper_args: str | None = None, oversample: int | None = None, remove_vectors: bool | None = None, force_ocr: bool | None = None, skip_text: bool | None = None, redo_ocr: bool | None = None, skip_big: float | None = None, optimize: int | None = None, jpg_quality: int | None = None, png_quality: int | None = None, jbig2_lossy: bool | None = None, jbig2_page_group_size: int | None = None, jbig2_threshold: float | None = None, pages: str | None = None, max_image_mpixels: float | None = None, tesseract_config: Iterable[str] | None = None, tesseract_pagesegmode: int | None = None, tesseract_oem: int | None = None, tesseract_thresholding: int | None = None, pdf_renderer: str | None = None, tesseract_timeout: float | None = None, tesseract_non_ocr_timeout: float | None = None, tesseract_downsample_above: int | None = None, tesseract_downsample_large_images: bool | None = None, rotate_pages_threshold: float | None = None, pdfa_image_compression: str | None = None, color_conversion_strategy: str | None = None, user_words: os.PathLike | None = None, user_patterns: os.PathLike | None = None, fast_web_view: float | None = None, continue_on_soft_render_error: bool | None = None, invalidate_digital_signatures: bool | None = None, plugins: Iterable[StrPath] | None = None, plugin_manager=None, keep_temporary_files: bool | None = None, progress_bar: bool | None = None, **kwargs)¶
	Run OCRmyPDF on one PDF or image.

For most arguments, see documentation for the equivalent command line parameter.

This API takes a threading lock, because OCRmyPDF uses global state in particular
for the plugin system. The jobs parameter will be used to create a pool of
worker threads or processes at different times, subject to change. A Python
process can only run one OCRmyPDF task at a time.

To run parallelize instances OCRmyPDF, use separate Python processes to scale
horizontally. Generally speaking you should set jobs=sqrt(cpu_count) and run
sqrt(cpu_count) processes as a starting point. If you have files with a high page
count, run fewer processes and more jobs per process. If you have a lot of short
files, run more processes and fewer jobs per process.

A few specific arguments are discussed here:

	Parameters:
		use_threads – Use worker threads instead of processes. This reduces
performance but may make debugging easier since it is easier to set
breakpoints.

	input_file – If a pathlib.Path, str or bytes, this is
interpreted as file system path to the input file. If the object
appears to be a readable stream (with methods such as .read()
and .seek()), the object will be read in its entirety and saved to
a temporary file. If input_file is "-", standard input will be
read.

	output_file – If a pathlib.Path, str or bytes, this is
interpreted as file system path to the output file. If the object
appears to be a writable stream (with methods such as .write() and
.seek()), the output will be written to this stream. If
output_file is "-", the output will be written to sys.stdout
(provided that standard output does not seem to be a terminal device).
When a stream is used as output, whether via a writable object or
"-", some final validation steps are not performed (we do not read
back the stream after it is written).

	Raises:
		ocrmypdf.MissingDependencyError – If a required dependency program is missing or
 was not found on PATH.

	ocrmypdf.UnsupportedImageFormatError – If the input file type was an image that
 could not be read, or some other file type that is not a PDF.

	ocrmypdf.DpiError – If the input file is an image, but the resolution of the
 image is not credible (allowing it to proceed would cause poor OCR).

	ocrmypdf.OutputFileAccessError – If an attempt to write to the intended output
 file failed.

	ocrmypdf.PriorOcrFoundError – If the input PDF seems to have OCR or digital
 text already, and settings did not tell us to proceed.

	ocrmypdf.InputFileError – Any other problem with the input file.

	ocrmypdf.SubprocessOutputError – Any error related to executing a subprocess.

	ocrmypdf.EncryptedPdfError – If the input PDF is encrypted (password protected).
 OCRmyPDF does not remove passwords.

	ocrmypdf.TesseractConfigError – If Tesseract reported its configuration was not
 valid.

	Returns:
	ocrmypdf.ExitCode

ocrmypdf.exceptions¶

OCRmyPDF’s exceptions.

	
exception ocrmypdf.exceptions.BadArgsError¶
	Invalid arguments on the command line or API.

	
exit_code = 1¶
	

	
exception ocrmypdf.exceptions.ColorConversionNeededError¶
	PDF needs color conversion.

	
message = 'The input PDF has an unusual color space. Use\n--color-conversion-strategy to convert to a common color space\nsuch as RGB, or use --output-type pdf to skip PDF/A conversion\nand retain the original color space.\n'¶
	

	
exception ocrmypdf.exceptions.DigitalSignatureError¶
	PDF has a digital signature.

	
message = 'Input PDF has a digital signature. OCR would alter the document,\ninvalidating the signature.\n'¶
	

	
exception ocrmypdf.exceptions.DpiError¶
	Missing information about input image DPI.

	
exit_code = 2¶
	

	
exception ocrmypdf.exceptions.EncryptedPdfError¶
	Input PDF is encrypted.

	
exit_code = 8¶
	

	
message = "Input PDF is encrypted. The encryption must be removed to\nperform OCR.\n\nFor information about this PDF's security use\n qpdf --show-encryption infilename\n\nYou can remove the encryption using\n qpdf --decrypt [--password=[password]] infilename\n"¶
	

	
class ocrmypdf.exceptions.ExitCode(value)¶
	OCRmyPDF’s exit codes.

	
already_done_ocr = 6¶
	

	
bad_args = 1¶
	

	
child_process_error = 7¶
	

	
ctrl_c = 130¶
	

	
encrypted_pdf = 8¶
	

	
file_access_error = 5¶
	

	
input_file = 2¶
	

	
invalid_config = 9¶
	

	
invalid_output_pdf = 4¶
	

	
missing_dependency = 3¶
	

	
ok = 0¶
	

	
other_error = 15¶
	

	
pdfa_conversion_failed = 10¶
	

	
exception ocrmypdf.exceptions.ExitCodeException¶
	An exception which should return an exit code with sys.exit().

	
exit_code = 15¶
	

	
message = ''¶
	

	
exception ocrmypdf.exceptions.InputFileError¶
	Something is wrong with the input file.

	
exit_code = 2¶
	

	
exception ocrmypdf.exceptions.MissingDependencyError¶
	A third-party dependency is missing.

	
exit_code = 3¶
	

	
exception ocrmypdf.exceptions.OutputFileAccessError¶
	Cannot access the intended output file path.

	
exit_code = 5¶
	

	
exception ocrmypdf.exceptions.PriorOcrFoundError¶
	This file already has OCR.

	
exit_code = 6¶
	

	
exception ocrmypdf.exceptions.SubprocessOutputError¶
	A subprocess returned an unexpected error.

	
exit_code = 7¶
	

	
exception ocrmypdf.exceptions.TaggedPDFError¶
	PDF is tagged.

	
message = 'This PDF is marked as a Tagged PDF. This often indicates\nthat the PDF was generated from an office document and does\nnot need OCR. Use --force-ocr, --skip-text or --redo-ocr to\noverride this error.\n'¶
	

	
exception ocrmypdf.exceptions.TesseractConfigError¶
	Tesseract config can’t be parsed.

	
exit_code = 9¶
	

	
message = 'Error occurred while parsing a Tesseract configuration file'¶
	

	
exception ocrmypdf.exceptions.UnsupportedImageFormatError¶
	The image format is not supported.

	
exit_code = 2¶
	

ocrmypdf.helpers¶

Support functions.

	
exception ocrmypdf.helpers.NeverRaise
	An exception that is never raised.

	
class ocrmypdf.helpers.Resolution(x: T, y: T)
	The number of pixels per inch in each 2D direction.

Resolution objects are considered “equal” for == purposes if they are
equal to a reasonable tolerance.

	
flip_axis() → Resolution[T]
	Return a new Resolution object with x and y swapped.

	
property is_finite: bool
	True if both x and y are finite numbers.

	
property is_square: bool
	True if the resolution is square (x == y).

	
round(ndigits: int) → Resolution
	Round to ndigits after the decimal point.

	
take_max(vals: Iterable[Any], yvals: Iterable[Any] | None = None) → Resolution
	Return a new Resolution object with the maximum resolution of inputs.

	
take_min(vals: Iterable[Any], yvals: Iterable[Any] | None = None) → Resolution
	Return a new Resolution object with the minimum resolution of inputs.

	
to_int() → Resolution[int]
	Round to nearest integer.

	
to_scalar() → float
	Return the harmonic mean of x and y as a 1D approximation.

In most cases, Resolution is 2D, but typically it is “square” (x == y) and
can be approximated as a single number. When not square, the harmonic mean
is used to approximate the 2D resolution as a single number.

	
ocrmypdf.helpers.available_cpu_count() → int
	Returns number of CPUs in the system.

	
ocrmypdf.helpers.check_pdf(input_file: Path) → bool
	Check if a PDF complies with the PDF specification.

Checks for proper formatting and proper linearization. Uses pikepdf (which in
turn, uses QPDF) to perform the checks.

	
ocrmypdf.helpers.clamp(n: T, smallest: T, largest: T) → T
	Clamps the value of n to between smallest and largest.

	
ocrmypdf.helpers.is_file_writable(test_file: PathLike) → bool
	Intentionally racy test if target is writable.

We intend to write to the output file if and only if we succeed and
can replace it atomically. Before doing the OCR work, make sure
the location is writable.

	
ocrmypdf.helpers.is_iterable_notstr(thing: Any) → bool
	Is this is an iterable type, other than a string?

	
ocrmypdf.helpers.monotonic(seq: Sequence) → bool
	Does this sequence increase monotonically?

	
ocrmypdf.helpers.page_number(input_file: PathLike) → int
	Get one-based page number implied by filename (000002.pdf -> 2).

	
ocrmypdf.helpers.pikepdf_enable_mmap() → None
	Enable pikepdf memory mapping.

	
ocrmypdf.helpers.remove_all_log_handlers(logger: Logger) → None
	Remove all log handlers, usually used in a child process.

The child process inherits the log handlers from the parent process when
a fork occurs. Typically we want to remove all log handlers in the child
process so that the child process can set up a single queue handler to
forward log messages to the parent process.

	
ocrmypdf.helpers.safe_symlink(input_file: PathLike, soft_link_name: PathLike) → None
	Create a symbolic link at soft_link_name, which references input_file.

Think of this as copying input_file to soft_link_name with less overhead.

Use symlinks safely. Self-linking loops are prevented. On Windows, file copy is
used since symlinks may require administrator privileges. An existing link at the
destination is removed.

	
ocrmypdf.helpers.samefile(file1: PathLike, file2: PathLike) → bool
	Return True if two files are the same file.

Attempts to account for different relative paths to the same file.

ocrmypdf.hocrtransform¶

Transform .hocr and page image to text PDF.

	
class ocrmypdf.hocrtransform.HocrTransform(*, hocr_filename: str | Path, dpi: float)¶
	A class for converting documents from the hOCR format.

For details of the hOCR format, see:
http://kba.cloud/hocr-spec/.

	
classmethod baseline(element: Element) → tuple[float, float]¶
	Get baseline’s slope and intercept.

	
classmethod element_coordinates(element: Element) → Rect¶
	Get coordinates of the bounding box around an element.

	
classmethod polyval(poly, x)¶
	Calculate the value of a polynomial at a point.

	
pt_from_pixel(pxl) → Rect¶
	Returns the quantity in PDF units (pt) given quantity in pixels.

	
classmethod replace_unsupported_chars(s: str) → str¶
	Replaces characters with those available in the Helvetica typeface.

	
to_pdf(*, out_filename: Path, image_filename: Path | None = None, show_bounding_boxes: bool = False, fontname: str = 'Helvetica', invisible_text: bool = False, interword_spaces: bool = False) → None¶
	Creates a PDF file with an image superimposed on top of the text.

Text is positioned according to the bounding box of the lines in
the hOCR file.
The image need not be identical to the image used to create the hOCR
file.
It can have a lower resolution, different color mode, etc.

	Parameters:
		out_filename – Path of PDF to write.

	image_filename – Image to use for this file. If omitted, the OCR text
is shown.

	show_bounding_boxes – Show bounding boxes around various text regions,
for debugging.

	fontname – Name of font to use.

	invisible_text – If True, text is rendered invisible so that is
selectable but never drawn. If False, text is visible and may
be seen if the image is skipped or deleted in Acrobat.

	interword_spaces – If True, insert spaces between words rather than
drawing each word without spaces. Generally this improves text
extraction.

	
exception ocrmypdf.hocrtransform.HocrTransformError¶
	Error while applying hOCR transform.

	
class ocrmypdf.hocrtransform.Rect(x1: Any, y1: Any, x2: Any, y2: Any)¶
	A rectangle for managing PDF coordinates.

	
x1: Any¶
	Alias for field number 0

	
x2: Any¶
	Alias for field number 2

	
y1: Any¶
	Alias for field number 1

	
y2: Any¶
	Alias for field number 3

ocrmypdf.pdfa¶

Utilities for PDF/A production and confirmation with Ghostspcript.

	
ocrmypdf.pdfa.file_claims_pdfa(filename: Path)¶
	Determines if the file claims to be PDF/A compliant.

This only checks if the XMP metadata contains a PDF/A marker. It does not
do full PDF/A validation.

	
ocrmypdf.pdfa.generate_pdfa_ps(target_filename: Path, icc: str = 'sRGB')¶
	Create a Postscript PDFMARK file for Ghostscript PDF/A conversion.

pdfmark is an extension to the Postscript language that describes some PDF
features like bookmarks and annotations. It was originally specified Adobe
Distiller, for Postscript to PDF conversion.

Ghostscript uses pdfmark for PDF to PDF/A conversion as well. To use Ghostscript
to create a PDF/A, we need to create a pdfmark file with the necessary metadata.

This function takes care of the many version-specific bugs and peculiarities in
Ghostscript’s handling of pdfmark.

The only information we put in specifies that we want the file to be a
PDF/A, and we want to Ghostscript to convert objects to the sRGB colorspace
if it runs into any object that it decides must be converted.

	Parameters:
		target_filename – filename to save

	icc – ICC identifier such as ‘sRGB’

References

Adobe PDFMARK Reference:
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdfmark_reference.pdf

ocrmypdf.quality¶

Utilities to measure OCR quality.

	
class ocrmypdf.quality.OcrQualityDictionary(*, wordlist: Iterable[str])¶
	Manages a dictionary for simple OCR quality checks.

	
measure_words_matched(ocr_text: str) → float¶
	Check how many unique words in the OCR text match a dictionary.

Words with mixed capitalized are only considered a match if the test word
matches that capitalization.

	Returns:
	number of words that match / number

ocrmypdf.subprocess¶

Wrappers to manage subprocess calls.

	
ocrmypdf.subprocess.check_external_program(*, program: str, package: str, version_checker: Callable[[], Version], need_version: str | Version, required_for: str | None = None, recommended: bool = False, version_parser: type[Version] = <class 'packaging.version.Version'>) → None¶
	Check for required version of external program and raise exception if not.

	Parameters:
		program – The name of the program to test.

	package – The name of a software package that typically supplies this program.
Usually the same as program.

	version_checker – A callable without arguments that retrieves the installed
version of program.

	need_version – The minimum required version.

	required_for – The name of an argument of feature that requires this program.

	recommended – If this external program is recommended, instead of raising
an exception, log a warning and allow execution to continue.

	version_parser – A class that should be used to parse and compare version
numbers. Used when version numbers do not follow standard conventions.

	
ocrmypdf.subprocess.get_version(program: str, *, version_arg: str = '--version', regex='(\\d+(\\.\\d+)*)', env: OsEnviron | None = None) → str¶
	Get the version of the specified program.

	Parameters:
		program – The program to version check.

	version_arg – The argument needed to ask for its version, e.g. --version.

	regex – A regular expression to parse the program’s output and obtain the
version.

	env – Custom os.environ in which to run program.

	
ocrmypdf.subprocess.run(args: Args, *, env: OsEnviron | None = None, logs_errors_to_stdout: bool = False, check: bool = False, **kwargs) → CompletedProcess¶
	Wrapper around subprocess.run().

The main purpose of this wrapper is to log subprocess output in an orderly
fashion that identifies the responsible subprocess. An additional
task is that this function goes to greater lengths to find possible Windows
locations of our dependencies when they are not on the system PATH.

Arguments should be identical to subprocess.run, except for following:

	Parameters:
		args – Positional arguments to pass to subprocess.run.

	env – A set of environment variables. If None, the OS environment is used.

	logs_errors_to_stdout – If True, indicates that the process writes its error
messages to stdout rather than stderr, so stdout should be logged
if there is an error. If False, stderr is logged. Could be used with
stderr=STDOUT, stdout=PIPE for example.

	check – If True, raise an exception if the process exits with a non-zero
status code. If False, the return value will indicate success or failure.

	kwargs – Additional arguments to pass to subprocess.run.

	
ocrmypdf.subprocess.run_polling_stderr(args: Args, *, callback: Callable[[str], None], check: bool = False, env: OsEnviron | None = None, **kwargs) → CompletedProcess¶
	Run a process like ocrmypdf.subprocess.run, and poll stderr.

Every line of produced by stderr will be forwarded to the callback function.
The intended use is monitoring progress of subprocesses that output their
own progress indicators. In addition, each line will be logged if debug
logging is enabled.

Requires stderr to be opened in text mode for ease of handling errors. In
addition the expected encoding= and errors= arguments should be set. Note
that if stdout is already set up, it need not be binary.

 Previous
 Next

 © Copyright 2023, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..
 Revision 27d52298.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: v15.4.2

 	Versions
	latest
	stable
	v15.4.2
	v15.4.1
	v15.4.0
	v15.3.1
	v15.3.0
	v15.2.0
	v15.1.0
	v15.0.2
	v15.0.1
	v15.0.0.post1
	v14.4.0
	v14.3.0
	v14.2.1
	v14.2.0
	v14.1.0
	v14.0.4
	v14.0.3
	v14.0.2
	v14.0.1
	v14.0.0
	v13.7.0
	v13.6.2
	v13.6.1
	v13.6.0
	v13.5.0
	v13.4.7
	v13.4.6
	v13.4.5
	v13.4.4
	v13.4.3
	v13.4.2
	v13.4.1
	v13.4.0
	v13.3.0
	v13.2.0
	v13.1.1
	v13.1.0
	v13.0.0
	v12.7.2
	v12.7.1
	v12.7.0
	v12.6.0
	v12.5.0
	v12.4.0
	v12.3.3
	v12.3.2
	v12.3.1
	v12.3.0
	v12.2.0
	v12.1.0
	v12.0.3
	v12.0.2
	v12.0.1
	v12.0.0
	v11.7.3
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

