

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	PDF optimization
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Online deployments	Limiting CPU usage
	Temporary storage requirements
	Timeouts
	Document management systems
	Commercial OCR alternatives

	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins
	API Reference
	Contributing guidelines
	Maintainer notes

 ocrmypdf

 	
	Online deployments
	
 Edit on GitHub

Online deployments¶

OCRmyPDF is designed to be used as a command line tool, but it can be
used in a web service. This document describes some considerations for
doing so.

A basic web service implementation is provided in the source code
repository, as misc/webservice.py. It is only demonstration quality
and is not intended for production use.

OCRmyPDF is not designed for use as a public web service where a
malicious user could upload a chosen PDF. In particular, it is not
necessarily secure against PDF malware or PDFs that cause denial of
service. For further discussino of security, see security.

OCRmyPDF relies on Ghostscript, and therefore, if deployed
online one should be prepared to comply with Ghostscript’s Affero GPL
license, and any other licenses.

Setting aside these concerns, a side effect of OCRmyPDF is that it may
incidentally sanitize PDFs containing certain types of malware. It
repairs the PDF with pikepdf/libqpdf, which could correct malformed PDF
structures that are part of an attack. When PDF/A output is selected
(the default), the input PDF is partially reconstructed by Ghostscript.
When --force-ocr is used, all pages are rasterized and reconverted
to PDF, which could remove malware in embedded images.

Limiting CPU usage¶

OCRmyPDF will attempt to use all available CPUs and storage, so
executing nice ocrmypdf or limiting the number of jobs with the
--jobs argument may ensure the server remains responsive. Another option
would be to run OCRmyPDF jobs inside a Docker container, a virtual machine,
or a cloud instance, which can impose its own limits on CPU usage and be
terminated “from orbit” if it fails to complete.

Temporary storage requirements¶

OCRmyPDF will use a large amount of temporary storage for its work,
proportional to the total number of pixels needed to rasterize the PDF.
The raster image of a 8.5×11” color page at 300 DPI takes 25 MB
uncompressed; OCRmyPDF saves its intermediates as PNG, but that still
means it requires about 9 MB per intermediate based on average
compression ratios. Multiple intermediates per page are also required,
depending on the command line given. A rule of thumb would be to allow
100 MB of temporary storage per page in a file – meaning that a small
cloud servers or small VM partitions should be provisioned with plenty
of extra space, if say, a 500 page file might be sent.

To change the temporary directory, see Changing temporary storage location.

On Amazon Web Services or other cloud vendors, consider setting your
temporary directory to empheral
storage.

Timeouts¶

To prevent excessively long OCR jobs consider setting
--tesseract-timeout and/or --skip-big arguments. --skip-big
is particularly helpful if your PDFs include documents such as reports
on standard page sizes with large images attached - often large images
are not worth OCR’ing anyway.

Document management systems¶

If you are looking for a full document management system, consider
paperless-ngx,
which is a web application that uses OCRmyPDF to automatically OCR and
archive documents.

Commercial OCR alternatives¶

The author also provides professional services that include OCR and
building databases around PDFs, and is happy to provide consultation.

Abbyy Cloud OCR is viable commercial alternative with a web services
API. Amazon Textract, Google Cloud Vision, and Microsoft Azure
Computer Vision provide advanced OCR but have less PDF rendering capability.

 Previous
 Next

 © Copyright 2022, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..
 Revision 7c38c717.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: v14.3.0

 	Versions
	latest
	stable
	v14.3.0
	v14.2.1
	v14.2.0
	v14.1.0
	v14.0.4
	v14.0.3
	v14.0.2
	v14.0.1
	v14.0.0
	v13.7.0
	v13.6.2
	v13.6.1
	v13.6.0
	v13.5.0
	v13.4.7
	v13.4.6
	v13.4.5
	v13.4.4
	v13.4.3
	v13.4.2
	v13.4.1
	v13.4.0
	v13.3.0
	v13.2.0
	v13.1.1
	v13.1.0
	v13.0.0
	v12.7.2
	v12.7.1
	v12.7.0
	v12.6.0
	v12.5.0
	v12.4.0
	v12.3.3
	v12.3.2
	v12.3.1
	v12.3.0
	v12.2.0
	v12.1.0
	v12.0.3
	v12.0.2
	v12.0.1
	v12.0.0
	v11.7.3
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

