

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	PDF optimization
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	OCRmyPDF Docker image
	Advanced features
	Batch processing	Batch jobs
	Directory trees	Sample script
	Synology DiskStations
	Huge batch jobs

	Hot (watched) folders	Watched folders with watcher.py
	Watched folders with Docker
	Caveats
	Alternatives

	macOS Automator

	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins
	API Reference
	Contributing guidelines
	Maintainer notes

 ocrmypdf

 	 »
	Batch processing
	
 Edit on GitHub

Batch processing¶

This article provides information about running OCRmyPDF on multiple
files or configuring it as a service triggered by file system events.

Batch jobs¶

Consider using the excellent GNU
Parallel to apply OCRmyPDF
to multiple files at once.

Both parallel and ocrmypdf will try to use all available
processors. To maximize parallelism without overloading your system with
processes, consider using parallel -j 2 to limit parallel to running
two jobs at once.

This command will run all ocrmypdf all files named *.pdf in the
current directory and write them to the previous created output/
folder. It will not search subdirectories.

The --tag argument tells parallel to print the filename as a prefix
whenever a message is printed, so that one can trace any errors to the
file that produced them.

parallel --tag -j 2 ocrmypdf '{}' 'output/{}' ::: *.pdf

OCRmyPDF automatically repairs PDFs before parsing and gathering
information from them.

Directory trees¶

This will walk through a directory tree and run OCR on all files in
place, and printing each filename in between runs:

find . -printf '%p\n' -name '*.pdf' -exec ocrmypdf '{}' '{}' \;

Alternatively, with a Docker container and streaming the file through
standard input and output:

find . -name '*.pdf' -print0 | xargs -0 | while read pdf; do
 pdfout=$(mktemp)
 docker run --rm -i jbarlow83/ocrmypdf - - <$pdf >$pdfout && cp $pdfout $pdf
done

This only runs one ocrmypdf process at a time. This variation uses
find to create a directory list and parallel to parallelize runs
of ocrmypdf, again updating files in place.

find . -name '*.pdf' | parallel --tag -j 2 ocrmypdf '{}' '{}'

In a Windows batch file, use

for /r %%f in (*.pdf) do ocrmypdf %%f %%f

Sample script¶

This user contributed script also provides an example of batch
processing.

misc/batch.py¶

#!/usr/bin/env python3
SPDX-FileCopyrightText: 2016 findingorder <https://github.com/findingorder>
SPDX-License-Identifier: MIT

from __future__ import annotations

This script must be edited to meet your needs.
import logging
import os
import sys
from pathlib import Path

import ocrmypdf

pylint: disable=logging-format-interpolation
pylint: disable=logging-not-lazy

script_dir = Path(__file__).parent

if len(sys.argv) > 1:
 start_dir = Path(sys.argv[1])
else:
 start_dir = Path('.')

if len(sys.argv) > 2:
 log_file = Path(sys.argv[2])
else:
 log_file = script_dir.with_name('ocr-tree.log')

logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s %(message)s',
 filename=log_file,
 filemode='a',
)

ocrmypdf.configure_logging(ocrmypdf.Verbosity.default)

for filename in start_dir.glob("**/*.py"):
 logging.info(f"Processing {filename}")
 result = ocrmypdf.ocr(filename, filename, deskew=True)
 if result == ocrmypdf.ExitCode.already_done_ocr:
 logging.error("Skipped document because it already contained text")
 elif result == ocrmypdf.ExitCode.ok:
 logging.info("OCR complete")
 logging.info(result)

Synology DiskStations¶

Synology DiskStations (Network Attached Storage devices) can run the
Docker image of OCRmyPDF if the Synology Docker
package is
installed. Attached is a script to address particular quirks of using
OCRmyPDF on one of these devices.

This is only possible for x86-based Synology products. Some Synology
products use ARM or Power processors and do not support Docker. Further
adjustments might be needed to deal with the Synology’s relatively
limited CPU and RAM.

misc/synology.py - Sample script for Synology DiskStations¶

#!/bin/env python3
SPDX-FileCopyrightText: 2017 Enantiomerie
SPDX-License-Identifier: MIT

"""Example OCRmyPDF for Synology NAS"""

from __future__ import annotations

This script must be edited to meet your needs.
import logging
import os
import shutil
import subprocess
import sys
import time

pylint: disable=logging-format-interpolation
pylint: disable=logging-not-lazy

script_dir = os.path.dirname(os.path.realpath(__file__))
timestamp = time.strftime("%Y-%m-%d-%H%M_")
log_file = script_dir + '/' + timestamp + 'ocrmypdf.log'
logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s %(message)s',
 filename=log_file,
 filemode='w',
)

start_dir = sys.argv[1] if len(sys.argv) > 1 else '.'

for dir_name, _subdirs, file_list in os.walk(start_dir):
 logging.info(dir_name)
 os.chdir(dir_name)
 for filename in file_list:
 file_stem, file_ext = os.path.splitext(filename)
 if file_ext != '.pdf':
 continue
 full_path = os.path.join(dir_name, filename)
 timestamp_ocr = time.strftime("%Y-%m-%d-%H%M_OCR_")
 filename_ocr = timestamp_ocr + file_stem + '.pdf'
 # create string for pdf processing
 # the script is processed as root user via chron
 cmd = [
 'docker',
 'run',
 '--rm',
 '-i',
 'jbarlow83/ocrmypdf',
 '--deskew',
 '-',
 '-',
]
 logging.info(cmd)
 full_path_ocr = os.path.join(dir_name, filename_ocr)
 with open(filename, 'rb') as input_file, open(
 full_path_ocr, 'wb'
) as output_file:
 proc = subprocess.run(
 cmd,
 stdin=input_file,
 stdout=output_file,
 stderr=subprocess.PIPE,
 check=False,
 text=True,
 errors='ignore',
)
 logging.info(proc.stderr)
 os.chmod(full_path_ocr, 0o664)
 os.chmod(full_path, 0o664)
 full_path_ocr_archive = sys.argv[2]
 full_path_archive = sys.argv[2] + '/no_ocr'
 shutil.move(full_path_ocr, full_path_ocr_archive)
 shutil.move(full_path, full_path_archive)
logging.info('Finished.\n')

Huge batch jobs¶

If you have thousands of files to work with, contact the author.
Consulting work related to OCRmyPDF helps fund this open source project
and all inquiries are appreciated.

Hot (watched) folders¶

Watched folders with watcher.py¶

OCRmyPDF has a folder watcher called watcher.py, which is currently included in source
distributions but not part of the main program. It may be used natively or may run
in a Docker container. Native instances tend to give better performance. watcher.py
works on all platforms.

Users may need to customize the script to meet their requirements.

pip3 install ocrmypdf[watcher]

env OCR_INPUT_DIRECTORY=/mnt/input-pdfs \
 OCR_OUTPUT_DIRECTORY=/mnt/output-pdfs \
 OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1 \
 python3 watcher.py

watcher.py environment variables¶	Environment variable
	Description

	OCR_INPUT_DIRECTORY
	Set input directory to monitor (recursive)

	OCR_OUTPUT_DIRECTORY
	Set output directory (should not be under input)

	OCR_ARCHIVE_DIRECTORY
	Set archive directory for processed originals (should not be under input, requires OCR_ON_SUCCESS_ARCHIVE to be set)

	OCR_ON_SUCCESS_DELETE
	This will delete the input file if the exit code is 0 (OK)

	OCR_ON_SUCCESS_ARCHIVE
	This will move the processed orignal file to OCR_ARCHIVE_DIRECTORY if the exit code is 0 (OK). Note that OCR_ON_SUCCESS_DELETE takes precedence over this option, i.e. if both options are set, the input file will be deleted.

	OCR_OUTPUT_DIRECTORY_YEAR_MONTH
	This will place files in the output in {output}/{year}/{month}/{filename}

	OCR_DESKEW
	Apply deskew to crooked input PDFs

	OCR_JSON_SETTINGS
	A JSON string specifying any other arguments for ocrmypdf.ocr, e.g. 'OCR_JSON_SETTINGS={"rotate_pages": true}'.

	OCR_POLL_NEW_FILE_SECONDS
	Polling interval

	OCR_LOGLEVEL
	Level of log messages to report

One could configure a networked scanner or scanning computer to drop files in the
watched folder.

Watched folders with Docker¶

The watcher service is included in the OCRmyPDF Docker image. To run it:

docker run \
 -v <path to files to convert>:/input \
 -v <path to store results>:/output \
 -v <path to store processed originals>:/archive \
 -e OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1 \
 -e OCR_ON_SUCCESS_ARCHIVE=1 \
 -e OCR_DESKEW=1 \
 -e PYTHONUNBUFFERED=1 \
 -it --entrypoint python3 \
 jbarlow83/ocrmypdf \
 watcher.py

This service will watch for a file that matches /input/*.pdf,
convert it to a OCRed PDF in /output/, and move the processed
original to /archive. The parameters to this image are:

watcher.py parameters for Docker¶	Parameter
	Description

	-v <path to files to convert>:/input
	Files placed in this location will be OCRed

	-v <path to store results>:/output
	This is where OCRed files will be stored

	-v <path to store processed originals>:/archive
	Archive processed originals here

	-e OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1
	Define environment variable OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1 to place files in the output in {output}/{year}/{month}/{filename}

	-e OCR_ON_SUCCESS_ARCHIVE=1
	Define environment variable OCR_ON_SUCCESS_ARCHIVE to move processed originals

	-e OCR_DESKEW=1
	Define environment variable OCR_DESKEW to apply deskew to crooked input PDFs

	-e PYTHONBUFFERED=1
	This will force STDOUT to be unbuffered and allow you to see messages in docker logs

This service relies on polling to check for changes to the filesystem. It
may not be suitable for some environments, such as filesystems shared on a
slow network.

A configuration manager such as Docker Compose could be used to ensure that the
service is always available.

misc/docker-compose.example.yml¶

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MIT

version: "3.3"
services:
 ocrmypdf:
 restart: always
 container_name: ocrmypdf
 image: jbarlow83/ocrmypdf
 volumes:
 - "/media/scan:/input"
 - "/mnt/scan:/output"
 environment:
 - OCR_OUTPUT_DIRECTORY_YEAR_MONTH=0
 user: "<SET TO YOUR USER ID>:<SET TO YOUR GROUP ID>"
 entrypoint: python3
 command: watcher.py

Caveats¶

	watchmedo may not work properly on a networked file system,
depending on the capabilities of the file system client and server.

	This simple recipe does not filter for the type of file system event,
so file copies, deletes and moves, and directory operations, will all
be sent to ocrmypdf, producing errors in several cases. Disable your
watched folder if you are doing anything other than copying files to
it.

	If the source and destination directory are the same, watchmedo may
create an infinite loop.

	On BSD, FreeBSD and older versions of macOS, you may need to increase
the number of file descriptors to monitor more files, using
ulimit -n 1024 to watch a folder of up to 1024 files.

Alternatives¶

	On Linux, systemd user services
can be configured to automatically perform OCR on a collection of files.

	Watchman is a more
powerful alternative to watchmedo.

macOS Automator¶

You can use the Automator app with macOS, to create a Workflow or Quick
Action. Use a Run Shell Script action in your workflow. In the context
of Automator, the PATH may be set differently your Terminal’s
PATH; you may need to explicitly set the PATH to include
ocrmypdf. The following example may serve as a starting point:

You may customize the command sent to ocrmypdf.

 Previous
 Next

 © Copyright 2022, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..
 Revision 7bd0e432.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: v14.0.0

 	Versions
	latest
	stable
	v14.0.0
	v13.7.0
	v13.6.2
	v13.6.1
	v13.6.0
	v13.5.0
	v13.4.7
	v13.4.6
	v13.4.5
	v13.4.4
	v13.4.3
	v13.4.2
	v13.4.1
	v13.4.0
	v13.3.0
	v13.2.0
	v13.1.1
	v13.1.0
	v13.0.0
	v12.7.2
	v12.7.1
	v12.7.0
	v12.6.0
	v12.5.0
	v12.4.0
	v12.3.3
	v12.3.2
	v12.3.1
	v12.3.0
	v12.2.0
	v12.1.0
	v12.0.3
	v12.0.2
	v12.0.1
	v12.0.0
	v11.7.3
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

