

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	PDF optimization
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins	Script plugins
	Packaged plugins
	Setuptools plugins
	Plugin requirements
	Plugin hooks
	Examples	Custom command line arguments
	Execution and progress reporting
	Applying special behavior before processing
	PDF page to image
	Modifying intermediate images
	OCR engine
	PDF/A production

	API Reference
	Contributing guidelines
	Maintainer notes

 ocrmypdf

 	 »
	Plugins
	
 Edit on GitHub

Plugins¶

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

You can use plugins to customize the behavior of OCRmyPDF at certain points of
interest.

Currently, it is possible to:

	add new command line arguments

	override the decision for whether or not to perform OCR on a particular file

	modify the image is about to be sent for OCR

	modify the page image before it is converted to PDF

	replace the Tesseract OCR with another OCR engine that has similar behavior

	replace Ghostscript with another PDF to image converter (rasterizer) or
PDF/A generator

OCRmyPDF plugins are based on the Python pluggy package and conform to its
conventions. Note that: plugins installed with as setuptools entrypoints are
not checked currently, because OCRmyPDF assumes you may not want to enable
plugins for all files.

Script plugins¶

Script plugins may be called from the command line, by specifying the name of a file.
Script plugins may be convenient for informal or “one-off” plugins, when a certain
batch of files needs a special processing step for example.

ocrmypdf --plugin ocrmypdf_example_plugin.py input.pdf output.pdf

Multiple plugins may be installed by issuing the --plugin argument multiple times.

Packaged plugins¶

Installed plugins may be installed into the same virtual environment as OCRmyPDF
is installed into. They may be invoked using Python standard module naming.
If you are intending to distribute a plugin, please package it.

ocrmypdf --plugin ocrmypdf_fancypants.pockets.contents input.pdf output.pdf

OCRmyPDF does not automatically import plugins, because the assumption is that
plugins affect different files differently and you may not want them activated
all the time. The command line or ocrmypdf.ocr(plugin='...') must call
for them.

Third parties that wish to distribute packages for ocrmypdf should package them
as packaged plugins, and these modules should begin with the name ocrmypdf_
similar to pytest packages such as pytest-cov (the package) and
pytest_cov (the module).

Note

We recommend plugin authors name their plugins with the prefix
ocrmypdf- (for the package name on PyPI) and ocrmypdf_ (for the
module), just like pytest plugins. At the same time, please make it clear
that your package is not official.

Setuptools plugins¶

You can also create a plugin that OCRmyPDF will always automatically load if both are
installed in the same virtual environment, using a setuptools entrypoint.

Your package’s setup.py would need to contain the following, for a plugin
named ocrmypdf-exampleplugin:

sample ./setup.py file
from setuptools import setup

setup(
 name="ocrmypdf-exampleplugin",
 packages=["exampleplugin"],
 # the following makes a plugin available to pytest
 entry_points={"ocrmypdf": ["exampleplugin = exampleplugin.pluginmodule"]},
)

equivalent setup.cfg
[options.entry_points]
ocrmypdf =
 exampleplugin = exampleplugin.pluginmodule

Plugin requirements¶

OCRmyPDF generally uses multiple worker processes. When a new worker is started,
Python will import all plugins again, including all plugins that were imported earlier.
This means that the global state of a plugin in one worker will not be shared with
other workers. As such, plugin hook implementations should be stateless, relying
only on their inputs. Hook implementations may use their input parameters to
to obtain a reference to shared state prepared by another hook implementation.
Plugins must expect that other instances of the plugin will be running
simultaneously.

The context object that is passed to many hooks can be used to share information
about a file being worked on. Plugins must write private, plugin-specific data to
a subfolder named {options.work_folder}/ocrmypdf-plugin-name. Plugins MAY
read and write files in options.work_folder, but should be aware that their
semantics are subject to change.

OCRmyPDF will delete options.work_folder when it has finished OCRing
a file, unless invoked with --keep-temporary-files.

The documentation for some plugin hooks contain a detailed description of the
execution context in which they will be called.

Plugins should be prepared to work whether executed in worker threads or worker
processes. Generally, OCRmyPDF uses processes, but has a semi-hidden threaded
argument that simplifies debugging.

Plugin hooks¶

A plugin may provide the following hooks. Hooks must be decorated with
ocrmypdf.hookimpl, for example:

from ocrmpydf import hookimpl

@hookimpl
def add_options(parser):
 pass

The following is a complete list of hooks that are available, and when
they are called.

Note on firstresult hooks

If multiple plugins install implementations for this hook, they will be called in
the reverse of the order in which they are installed (i.e., last plugin wins).
When each hook implementation is called in order, the first implementation that
returns a value other than None will “win” and prevent execution of all other
hooks. As such, you cannot “chain” a series of plugin filters together in this
way. Instead, a single hook implementation should be responsible for any such
chaining operations.

Examples¶

	OCRmyPDF’s test suite contains several plugins that are used to simulate certain
test conditions.

	ocrmypdf-papermerge is
a production plugin that integrates OCRmyPDF and the Papermerge document
management system.

Custom command line arguments¶

	
ocrmypdf.pluginspec.add_options(parser: ArgumentParser) → None¶
	Allows the plugin to add its own command line and API arguments.

OCRmyPDF converts command line arguments to API arguments, so adding
arguments here will cause new arguments to be processed for API calls
to ocrmypdf.ocr, or when invoked on the command line.

Note

This hook will be called from the main process, and may modify global state
before child worker processes are forked.

	
ocrmypdf.pluginspec.check_options(options: Namespace) → None¶
	Called to ask the plugin to check all of the options.

The plugin may check if options that it added are valid.

Warnings or other messages may be passed to the user by creating a logger
object using log = logging.getLogger(__name__) and logging to this.

The plugin may also modify the options. All objects that are in options
must be picklable so they can be marshalled to child worker processes.

	Raises
	ocrmypdf.exceptions.ExitCodeException – If options are not acceptable
 and the application should terminate gracefully with an informative
 message and error code.

Note

This hook will be called from the main process, and may modify global state
before child worker processes are forked.

Execution and progress reporting¶

	
ocrmypdf.pluginspec.get_logging_console() → Handler¶
	Returns a custom logging handler.

Generally this is necessary when both logging output and a progress bar are both
outputting to sys.stderr.

Note

This is a firstresult hook.

	
ocrmypdf.pluginspec.get_executor(progressbar_class) → Executor¶
	Called to obtain an object that manages parallel execution.

This may be used to replace OCRmyPDF’s default parallel execution system
with a third party alternative. For example, you could make OCRmyPDF run in a
distributed environment.

OCRmyPDF’s executors are analogous to the standard Python executors in
conconcurrent.futures, but they do not work the same way. Executors may
be reused for different, unrelated batch operations, since all of the context
for a given job are passed to Executor.__call__().

Should be of type Executor or otherwise conforming to the protocol
of that call.

	Parameters
	progressbar_class – A progress bar class, which will be created when

Note

This hook will be called from the main process, and may modify global state
before child worker processes are forked.

Note

This is a firstresult hook.

	
ocrmypdf.pluginspec.get_progressbar_class()¶
	Called to obtain a class that can be used to monitor progress.

A progress bar is assumed, but this could be used for any type of monitoring.

The class should follow a tqdm-like protocol. Calling the class should return
a new progress bar object, which is activated with __enter__ and terminated
__exit__. An update method is called whenever the progress bar is updated.
Progress bar objects will not be reused; a new one will be created for each
group of tasks.

The progress bar is held in the main process/thread and not updated by child
process/threads. When a child notifies the parent of completed work, the
parent updates the progress bar.

The arguments are the same as tqdm accepts.

Progress bars should never write to sys.stdout, or they will corrupt the
output if OCRmyPDF writes a PDF to standard output.

The type of events that OCRmyPDF reports to a progress bar may change in
minor releases.

Here is how OCRmyPDF will use the progress bar:

Example

pbar_class = pm.hook.get_progressbar_class()
with pbar_class(**tqdm_kwargs) as pbar:

…
pbar.update(1)

Applying special behavior before processing¶

	
ocrmypdf.pluginspec.validate(pdfinfo: PdfInfo, options: Namespace) → None¶
	Called to give a plugin an opportunity to review options and pdfinfo.

options contains the “work order” to process a particular file. pdfinfo
contains information about the input file obtained after loading and
parsing. The plugin may modify the options. For example, you could decide
that a certain type of file should be treated with options.force_ocr = True
based on information in its pdfinfo.

	Raises
	ocrmypdf.exceptions.ExitCodeException – If options or pdfinfo are not acceptable
 and the application should terminate gracefully with an informative
 message and error code.

Note

This hook will be called from the main process, and may modify global state
before child worker processes are forked.

PDF page to image¶

	
ocrmypdf.pluginspec.rasterize_pdf_page(input_file: Path, output_file: Path, raster_device: str, raster_dpi: Resolution, pageno: int, page_dpi: Optional[Resolution], rotation: Optional[int], filter_vector: bool) → Path¶
	Rasterize one page of a PDF at resolution raster_dpi in canvas units.

The image is sized to match the integer pixels dimensions implied by
raster_dpi even if those numbers are noninteger. The image’s DPI will
be overridden with the values in page_dpi.

	Parameters
		input_file – The PDF to rasterize.

	output_file – The desired name of the rasterized image.

	raster_device – Type of image to produce at output_file

	raster_dpi – Resolution at which to rasterize page

	pageno – Page number to rasterize (beginning at page 1)

	page_dpi – Resolution, overriding output image DPI

	rotation – Cardinal angle, clockwise, to rotate page

	filter_vector – If True, remove vector graphics objects

	Returns
	Path – output_file if successful

Note

This hook will be called from child processes. Modifying global state
will not affect the main process or other child processes.

Note

This is a firstresult hook.

Modifying intermediate images¶

	
ocrmypdf.pluginspec.filter_ocr_image(page: PageContext, image: Image.Image) → Image.Image¶
	Called to filter the image before it is sent to OCR.

This is the image that OCR sees, not what the user sees when they view the
PDF. If redo_ocr is enabled, portions of the image will be masked so
they are not shown to OCR. The main use of this hook is expected to be hiding
content from OCR.

The input image may be color, grayscale, or monochrome, and the
output image may differ. The pixel width and height of the
output image must be identical to the input image, or misalignment between
the OCR text layer and visual position of the text will occur. Likewise,
the output must be a faithful representation of the input, or alignment
errors may occurs.

Tesseract OCR only deals with monochrome images, and internally converts
non-monochrome images to OCR.

Note

This hook will be called from child processes. Modifying global state
will not affect the main process or other child processes.

Note

This is a firstresult hook.

	
ocrmypdf.pluginspec.filter_page_image(page: PageContext, image_filename: Path) → Path¶
	Called to filter the whole page before it is inserted into the PDF.

A whole page image is only produced when preprocessing command line arguments
are issued or when --force-ocr is issued. If no whole page is image is
produced for a given page, this function will not be called. This is not
the image that will be shown to OCR.

If the function does not want to modify the image, it should return
image_filename. The hook may overwrite image_filename with a new file.

The output image should preserve the same physical unit dimensions, that is
(width * dpi_x, height * dpi_y). That is, if the image is resized, the DPI
must be adjusted by the reciprocal. If this is not preserved, the PDF page
will be resized and the OCR layer misaligned. OCRmyPDF does nothing
to enforce these constraints; it is up to the plugin to do sensible things.

OCRmyPDF will create the PDF page based on the image format used (unless the
hook is overriden). If you convert the image to a JPEG, the output page will
be created as a JPEG, etc. If you change the colorspace, that change will be
kept. Note that the OCRmyPDF image optimization stage, if enabled, may
ultimately chose a different format.

If the return value is a file that does not exist, FileNotFoundError
will occur. The return value should be a path to a file in the same folder
as image_filename.

Implementation detail: If the value returned is falsy, OCRmyPDF will ignore
the return value and assume the input file was unmodified. This is deprecated.
To leave the image unmodified, image_filename should be returned.

Note

This hook will be called from child processes. Modifying global state
will not affect the main process or other child processes.

Note

This is a firstresult hook.

	
ocrmypdf.pluginspec.filter_pdf_page(page: PageContext, image_filename: Path, output_pdf: Path) → Path¶
	Called to convert a filtered whole page image into a PDF.

A whole page image is only produced when preprocessing command line arguments
are issued or when --force-ocr is issued. If no whole page is image is
produced for a given page, this function will not be called. This is not
the image that will be shown to OCR. The whole page image is filtered in
the hook above, filter_page_image, then this function is called for
PDF conversion.

This function will only be called when OCRmyPDF runs in a mode such as
“force OCR” mode where rasterizing of all content is performed.

Clever things could be done at this stage such as segmenting the page image into
color regions or vector equivalents.

The provider of the hook implementation is responsible for ensuring that the
OCR text layer is aligned with the PDF produced here, or text misalignment
will result.

Currently this function must produce a single page PDF or the pipeline will
fail. If the intent is to remove the PDF, then create a single page empty
PDF.

	Parameters
		page – Context for this page.

	image_filename – Filename of the input image used to create output_pdf,
for “reference” if recreating the output_pdf entirely.

	output_pdf – The previous created output_pdf.

	Returns
	output_pdf

Note

This hook will be called from child processes. Modifying global state
will not affect the main process or other child processes.

Note

This is a firstresult hook.

OCR engine¶

	
ocrmypdf.pluginspec.get_ocr_engine() → OcrEngine¶
	Returns an OcrEngine to use for processing this file.

The OcrEngine may be instantiated multiple times, by both the main process
and child process.

Note

This is a firstresult hook.

	
class ocrmypdf.pluginspec.OcrEngine¶
	A class representing an OCR engine with capabilities similar to Tesseract OCR.

This could be used to create a plugin for another OCR engine instead of
Tesseract OCR.

	
abstract __str__()¶
	Returns name of OCR engine and version.

This is used when OCRmyPDF wants to mention the name of the OCR engine
to the user, usually in an error message.

	
abstract static creator_tag(options: Namespace) → str¶
	Returns the creator tag to identify this software’s role in creating the PDF.

This tag will be inserted in the XMP metadata and DocumentInfo dictionary
as appropriate. Ideally you should include the name of the OCR engine and its
version. The text should not contain line breaks. This is to help developers
like yourself identify the software that produced this file.

OCRmyPDF will always prepend its name to this value.

	
abstract static generate_hocr(input_file: Path, output_hocr: Path, output_text: Path, options: Namespace) → None¶
	Called to produce a hOCR file and sidecar text file.

	
abstract static generate_pdf(input_file: Path, output_pdf: Path, output_text: Path, options: Namespace) → None¶
	Called to produce a text only PDF.

	Parameters
		input_file – A page image on which to perform OCR.

	output_pdf – The expected name of the output PDF, which must be
a single page PDF with no visible content of any kind, sized
to the dimensions implied by the input_file’s width, height
and DPI. The image will be grafted onto the input PDF page.

	
static get_deskew(input_file: Path, options: Namespace) → float¶
	Returns the deskew angle of the image, in degrees.

	
abstract static get_orientation(input_file: Path, options: Namespace) → OrientationConfidence¶
	Returns the orientation of the image.

	
abstract static languages(options: Namespace) → AbstractSet[str]¶
	Returns the set of all languages that are supported by the engine.

Languages are typically given in 3-letter ISO 3166-1 codes, but actually
can be any value understood by the OCR engine.

	
abstract static version() → str¶
	Returns the version of the OCR engine.

	
class ocrmypdf.pluginspec.OrientationConfidence(angle: int, confidence: float)¶
	Expresses an OCR engine’s confidence in page rotation.

	
angle¶
	The clockwise angle (0, 90, 180, 270) that the page should be
rotated. 0 means no rotation.

	Type
	int

	
confidence¶
	How confident the OCR engine is that this the correct
rotation. 0 is not confident, 15 is very confident. Arbitrary units.

	Type
	float

PDF/A production¶

	
ocrmypdf.pluginspec.generate_pdfa(pdf_pages: List[Path], pdfmark: Path, output_file: Path, compression: str, pdf_version: str, pdfa_part: str, progressbar_class) → Path¶
	Generate a PDF/A.

This API strongly assumes a PDF/A generator with Ghostscript’s semantics.

OCRmyPDF will modify the metadata and possibly linearize the PDF/A after it
is generated.

	Parameters
		pdf_pages – A list of one or more filenames, will be merged into output_file.

	pdfmark – A PostScript file intended for Ghostscript with details on
how to perform the PDF/A conversion.

	output_file – The name of the desired output file.

	compression – One of 'jpeg', 'lossless', ''. For 'jpeg',
the PDF/A generator should convert all images to JPEG encoding where
possible. For lossless, all images should be converted to FlateEncode
(lossless PNG). If an empty string, the PDF generator should make its
own decisions about how to encode images.

	pdf_version – The minimum PDF version that the output file should be.
At its own discretion, the PDF/A generator may raise the version,
but should not lower it.

	pdfa_part – The desired PDF/A compliance level, such as '2B'.

	progressbar_class – The class of a progress bar with a tqdm-like API. An
instance of this class will be initialized when PDF/A conversion
begins, using
instance = progressbar_class(total: int, desc: str, unit:str),
defining the number of work units, a user-visible description,
and the name of the work units (“page”). Then instance.update()
will be called when a work unit is completed. If None, no
progress information is reported.

	Returns
	Path – If successful, the hook should return output_file.

Note

This is a firstresult hook.

See also

https://github.com/tqdm/tqdm

 Previous
 Next

 © Copyright 2022, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..
 Revision d8753dc7.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: v13.5.0

 	Versions
	latest
	stable
	v13.5.0
	v13.4.7
	v13.4.6
	v13.4.5
	v13.4.4
	v13.4.3
	v13.4.2
	v13.4.1
	v13.4.0
	v13.3.0
	v13.2.0
	v13.1.1
	v13.1.0
	v13.0.0
	v12.7.2
	v12.7.1
	v12.7.0
	v12.6.0
	v12.5.0
	v12.4.0
	v12.3.3
	v12.3.2
	v12.3.1
	v12.3.0
	v12.2.0
	v12.1.0
	v12.0.3
	v12.0.2
	v12.0.1
	v12.0.0
	v11.7.3
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

