

 ocrmypdf

 	Introduction	About OCR
	About PDFs
	About PDF/A
	What OCRmyPDF does
	Why you shouldn’t do this manually
	Limitations
	Similar programs
	Web front-ends

	Release notes
	Installing OCRmyPDF
	PDF optimization
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins
	API Reference
	Contributing guidelines

 ocrmypdf

 	Docs »
	Introduction
	

 Edit on GitHub

Introduction¶

OCRmyPDF is a Python 3 application and library that adds OCR layers to PDFs.

About OCR¶

Optical character
recognition
is technology that converts images of typed or handwritten text, such as
in a scanned document, to computer text that can be selected, searched and copied.

OCRmyPDF uses
Tesseract, the best
available open source OCR engine, to perform OCR.

About PDFs¶

PDFs are page description files that attempts to preserve a layout
exactly. They contain vector
graphics
that can contain raster objects such as scanned images. Because PDFs can
contain multiple pages (unlike many image formats) and can contain fonts
and text, it is a good formats for exchanging scanned documents.

A PDF page might contain multiple images, even if it only appears to
have one image. Some scanners or scanning software will segment pages
into monochromatic text and color regions for example, to improve the
compression ratio and appearance of the page.

Rasterizing a PDF is the process of generating an image suitable for
display or analyzing with an OCR engine. OCR engines like Tesseract work
with images, not vector objects.

About PDF/A¶

PDF/A is an ISO-standardized
subset of the full PDF specification that is designed for archiving (the
‘A’ stands for Archive). PDF/A differs from PDF primarily by omitting
features that would make it difficult to read the file in the future,
such as embedded Javascript, video, audio and references to external
fonts. All fonts and resources needed to interpret the PDF must be
contained within it. Because PDF/A disables Javascript and other types
of embedded content, it is probably more secure.

There are various conformance levels and versions, such as “PDF/A-2b”.

Generally speaking, the best format for scanned documents is PDF/A. Some
governments and jurisdictions, US Courts in particular, mandate the use
of PDF/A for scanned
documents.

Since most people who scan documents are interested in reading them
indefinitely into the future, OCRmyPDF generates PDF/A-2b by default.

PDF/A has a few drawbacks. Some PDF viewers include an alert that the
file is a PDF/A, which may confuse some users. It also tends to produce
larger files than PDF, because it embeds certain resources even if they
are commonly available. PDF/A files can be digitally signed, but may not
be encrypted, to ensure they can be read in the future. Fortunately,
converting from PDF/A to a regular PDF is trivial, and any PDF viewer
can view PDF/A.

What OCRmyPDF does¶

OCRmyPDF analyzes each page of a PDF to determine the colorspace and
resolution (DPI) needed to capture all of the information on that page
without losing content. It uses
Ghostscript to rasterize the page, and
then performs on OCR on the rasterized image to create an OCR “layer”.
The layer is then grafted back onto the original PDF.

While one can use a program like Ghostscript or ImageMagick to get an
image and put the image through Tesseract, that actually creates a new
PDF and many details may be lost. OCRmyPDF can produce a minimally
changed PDF as output.

OCRmyPDF also some image processing options like deskew which improve
the appearance of files and quality of OCR. When these are used, the OCR
layer is grafted onto the processed image instead.

By default, OCRmyPDF produces archival PDFs – PDF/A, which are a
stricter subset of PDF features designed for long term archives. If
regular PDFs are desired, this can be disabled with
--output-type pdf.

Why you shouldn’t do this manually¶

A PDF is similar to an HTML file, in that it contains document structure
along with images. Sometimes a PDF does nothing more than present a full
page image, but often there is additional content that would be lost.

A manual process could work like either of these:

	Rasterize each page as an image, OCR the images, and combine the
output into a PDF. This preserves the layout of each page, but
resamples all images (possibly losing quality, increasing file size,
introducing compression artifacts, etc.).
	Extract each image, OCR, and combine the output into a PDF. This
loses the context in which images are used in the PDF, meaning that
cropping, rotation and scaling of pages may be lost. Some scanned
PDFs use multiple images segmented into black and white, grayscale
and color regions, with stencil masks to prevent overlap, as this can
enhance the appearance of a file while reducing file size. Clearly,
reassembling these images will be easy. This also loses and text or
vector art on any pages in a PDF with both scanned and pure digital
content.

In the case of a PDF that is nothing other than a container of images
(no rotation, scaling, cropping, one image per page), the second
approach can be lossless.

OCRmyPDF uses several strategies depending on input options and the
input PDF itself, but generally speaking it rasterizes a page for OCR
and then grafts the OCR back onto the original. As such it can handle
complex PDFs and still preserve their contents as much as possible.

OCRmyPDF also supports a many, many edge cases that have cropped over
several years of development. We support PDF features like images inside
of Form XObjects, and pages with UserUnit scaling. We support rare image
formats like non-monochrome 1-bit images. We warn about files you may
not to OCR. Thanks to pikepdf and QPDF, we auto-repair PDFs that are
damaged. (Not that you need to know what any of these are! You should be
able to throw any PDF at it.)

Limitations¶

OCRmyPDF is limited by the Tesseract OCR engine. As such it experiences
these limitations, as do any other programs that rely on Tesseract:

	The OCR is not as accurate as commercial solutions such as Abbyy.
	It is not capable of recognizing handwriting.
	It may find gibberish and report this as OCR output.
	If a document contains languages outside of those given in the
-l LANG arguments, results may be poor.
	It is not always good at analyzing the natural reading order of
documents. For example, it may fail to recognize that a document
contains two columns, and may try to join text across columns.
	Poor quality scans may produce poor quality OCR. Garbage in, garbage
out.
	It does not expose information about what font family text belongs
to.

OCRmyPDF is also limited by the PDF specification:

	PDF encodes the position of text glyphs but does not encode document
structure. There is no markup that divides a document in sections,
paragraphs, sentences, or even words (since blank spaces are not
represented). As such all elements of document structure including
the spaces between words must be derived heuristically. Some PDF
viewers do a better job of this than others.
	Because some popular open source PDF viewers have a particularly hard
time with spaces between words, OCRmyPDF appends a space to each text
element as a workaround (when using --pdf-renderer hocr). While
this mixes document structure with graphical information that ideally
should be left to the PDF viewer to interpret, it improves
compatibility with some viewers and does not cause problems for
better ones.

Ghostscript also imposes some limitations:

	PDFs containing JBIG2-encoded content will be converted to CCITT
Group4 encoding, which has lower compression ratios, if Ghostscript
PDF/A is enabled.
	PDFs containing JPEG 2000-encoded content will be converted to JPEG
encoding, which may introduce compression artifacts, if Ghostscript
PDF/A is enabled.
	Ghostscript may transcode grayscale and color images, either lossy to
lossless or lossless to lossy, based on an internal algorithm. This
behavior can be suppressed by setting --pdfa-image-compression to
jpeg or lossless to set all images to one type or the other.
Ghostscript has no option to maintain the input image’s format.
(Ghostscript 9.25+ can copy JPEG images without transcoding them;
earlier versions will transcode.)
	Ghostscript’s PDF/A conversion removes any XMP metadata that is not
one of the standard XMP metadata namespaces for PDFs. In particular,
PRISM Metdata is removed.
	Ghostscript’s PDF/A conversion seems to remove or deactivate
hyperlinks and other active content.

You can use --output-type pdf to disable PDF/A conversion and produce
a standard, non-archival PDF.

Regarding OCRmyPDF itself:

	PDFs that use transparency are not currently represented in the test
suite

Similar programs¶

To the author’s knowledge, OCRmyPDF is the most feature-rich and
thoroughly tested command line OCR PDF conversion tool. If it does not
meet your needs, contributions and suggestions are welcome. If not,
consider one of these similar open source programs:

	pdf2pdfocr
	pdfsandwich
	pypdfocr
	pdfbeads

Web front-ends¶

The Docker image ocrmypdf provides a web service front-end
that allows files to submitted over HTTP and the results “downloaded”.
This is an HTTP server intended to simplify web services deployments; it
is not intended to be deployed on the public internet and no real
security measures to speak of.

In addition, the following third-party integrations are available:

	Nextcloud OCR is a free software
plugin for the Nextcloud private cloud software

OCRmyPDF is not designed to be secure against malware-bearing PDFs (see
Using OCRmyPDF online). Users should ensure they
comply with OCRmyPDF’s licenses and the licenses of all dependencies. In
particular, OCRmyPDF requires Ghostscript, which is licensed under
AGPLv3.

 Next

 Previous

 © Copyright 2020, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0.

 Revision d8f47768.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: v11.7.2

 	Versions
	latest
	stable
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

