

   
  
    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              	Introduction
	Release notes
	Installing OCRmyPDF
	PDF optimization
	Installing additional language packs
	Installing the JBIG2 encoder


Usage

	Cookbook
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Performance
	PDF security issues
	Common error messages


Developers

	Using the OCRmyPDF API	Example	Parent process requirements
	Logging
	Progress monitoring
	Exceptions
	Reference






	Plugins
	API Reference
	Contributing guidelines



            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
        
        
        
          

















  	Docs »
	Using the OCRmyPDF API
	
        
            
            
               Edit on GitHub
            
          
        
      



  
  



          
           
            
  
Using the OCRmyPDF API¶

OCRmyPDF originated as a command line program and continues to have this
legacy, but parts of it can be imported and used in other Python
applications.

Some applications may want to consider running ocrmypdf from a
subprocess call anyway, as this provides isolation of its activities.


Example¶

OCRmyPDF one high-level function to run its main engine from an
application. The parameters are symmetric to the command line arguments
and largely have the same functions.

import ocrmypdf

ocrmypdf.ocr('input.pdf', 'output.pdf', deskew=True)





With a few exceptions, all of the command line arguments are available
and may be passed as equivalent keywords.

A few differences are that verbose and quiet are not available.
Instead, output should be managed by configuring logging.


Parent process requirements¶

The ocrmypdf.ocr() function runs OCRmyPDF similar to command line
execution. To do this, it will:

	create a monitoring thread
	create worker processes (forking itself)
	manage the signal flags of worker processes
	execute other subprocesses (forking and executing other programs)


The Python process that calls ocrmypdf.ocr() must be sufficiently
privileged to perform these actions. If it is not, ocrmypdf() will
fail.

There is no currently no option to manage how jobs are scheduled other
than the argument jobs= which will limit the number of worker
processes.

Forking a child process to call ocrmypdf.ocr() is suggested. That
way your application will survive and remain interactive even if
OCRmyPDF does not.

Programs that call ocrmypdf.ocr() should also install a SIGBUS signal
handler (except on Windows), to raise an exception if access to a memory
mapped file fails. OCRmyPDF may use memory mapping.


Warning

On Windows, the script that calls ocrmypdf.ocr() must be protected
by an “ifmain” guard (if __name__ == '__main__') or you must use
ocrmypdf.ocr(...use_threads=True). If you do not take at least one
of these steps, Windows process semantics will prevent OCRmyPDF from working
correctly.






Logging¶

OCRmyPDF will log under loggers named ocrmypdf. In addition, it
imports pdfminer and PIL, both of which post log messages under
those logging namespaces.

You can configure the logging as desired for your application or call
ocrmypdf.configure_logging() to configure logging the same way
OCRmyPDF itself does. The command line parameters such as --quiet
and --verbose have no equivalents in the API; you must use the
provided configuration function or do configuration in a way that suits
your use case.




Progress monitoring¶

OCRmyPDF uses the tqdm package to implement its progress bars.
ocrmypdf.configure_logging() will set up logging output to
sys.stderr in a way that is compatible with the display of the
progress bar. Use ocrmypdf.ocr(...progress_bar=False) to disable
the progress bar.




Exceptions¶

OCRmyPDF may throw standard Python exceptions, ocrmypdf.exceptions.*
exceptions, some exceptions related to multiprocessing, and
KeyboardInterrupt. The parent process should provide an exception
handler. OCRmyPDF will clean up its temporary files and worker processes
automatically when an exception occurs.

Programs that call OCRmyPDF should consider trapping KeyboardInterrupt
so that they allow OCR to terminate with the whole program terminating.

When OCRmyPDF succeeds conditionally, it returns an integer exit code.




Reference¶

	
ocrmypdf.ocr(input_file: Union[BinaryIO, os.PathLike, str, bytes], output_file: Union[BinaryIO, os.PathLike, str, bytes], *, language: Iterable[str] = None, image_dpi: int = None, output_type=None, sidecar: os.PathLike = None, jobs: int = None, use_threads: bool = None, title: str = None, author: str = None, subject: str = None, keywords: str = None, rotate_pages: bool = None, remove_background: bool = None, deskew: bool = None, clean: bool = None, clean_final: bool = None, unpaper_args: str = None, oversample: int = None, remove_vectors: bool = None, threshold: bool = None, force_ocr: bool = None, skip_text: bool = None, redo_ocr: bool = None, skip_big: float = None, optimize: int = None, jpg_quality: int = None, png_quality: int = None, jbig2_lossy: bool = None, jbig2_page_group_size: int = None, pages: str = None, max_image_mpixels: float = None, tesseract_config: Iterable[str] = None, tesseract_pagesegmode: int = None, tesseract_oem: int = None, pdf_renderer=None, tesseract_timeout: float = None, rotate_pages_threshold: float = None, pdfa_image_compression=None, user_words: os.PathLike = None, user_patterns: os.PathLike = None, fast_web_view: float = None, plugins: Iterable[Union[str, pathlib.Path]] = None, keep_temporary_files: bool = None, progress_bar: bool = None, **kwargs)¶
	Run OCRmyPDF on one PDF or image.

For most arguments, see documentation for the equivalent command line parameter.
A few specific arguments are discussed here:

	Parameters:		use_threads – Use worker threads instead of processes. This reduces
performance but may make debugging easier since it is easier to set
breakpoints.
	input_file – If a pathlib.Path, str or bytes, this is
interpreted as file system path to the input file. If the object
appears to be a readable stream (with methods such as .read()
and .seek()), the object will be read in its entirety and saved to
a temporary file. If input_file is  "-", standard input will be
read.
	output_file – If a pathlib.Path, str or bytes, this is
interpreted as file system path to the output file. If the object
appears to be a writable stream (with methods such as .read() and
.seek()), the output will be written to this stream. If
output_file is "-", the output will be written to sys.stdout
(provided that standard output does not seem to be a terminal device).
When a stream is used as output, whether via a writable object or
"-", some final validation steps are not performed (we do not read
back the stream after it is written).



	Raises:		ocrmypdf.PdfMergeFailedError – If the input PDF is malformed, preventing merging
with the OCR layer.
	ocrmypdf.MissingDependencyError – If a required dependency program is missing or
was not found on PATH.
	ocrmypdf.UnsupportedImageFormatError – If the input file type was an image that
could not be read, or some other file type that is not a PDF.
	ocrmypdf.DpiError – If the input file is an image, but the resolution of the
image is not credible (allowing it to proceed would cause poor OCR).
	ocrmypdf.OutputFileAccessError – If an attempt to write to the intended output
file failed.
	ocrmypdf.PriorOcrFoundError – If the input PDF seems to have OCR or digital
text already, and settings did not tell us to proceed.
	ocrmypdf.InputFileError – Any other problem with the input file.
	ocrmypdf.SubprocessOutputError – Any error related to executing a subprocess.
	ocrmypdf.EncryptedPdfERror – If the input PDF is encrypted (password protected).
OCRmyPDF does not remove passwords.
	ocrmypdf.TesseractConfigError – If Tesseract reported its configuration was not
valid.



	Returns:	ocrmypdf.ExitCode








	
class ocrmypdf.Verbosity¶
	Verbosity level for configure_logging.

	
debug = 1¶
	Output ocrmypdf debug messages





	
debug_all = 2¶
	More detailed debugging from ocrmypdf and dependent modules





	
default = 0¶
	Default level of logging





	
quiet = -1¶
	Suppress most messages









	
ocrmypdf.configure_logging(verbosity: ocrmypdf.api.Verbosity, progress_bar_friendly: bool = True, manage_root_logger: bool = False)¶
	Set up logging.

Before calling ocrmypdf.ocr(), you can use this function to
configure logging, if you want ocrmypdf’s output to look like the ocrmypdf
command line interface. It will register log handlers, log filters, and
formatters, configure color logging to standard error, and adjust the log
levels of third party libraries. Details of this are fine-tuned and subject
to change. The verbosity argument is equivalent to the argument
--verbose and applies those settings.

If this function is not called, ocrmypdf will not configure logging, and it
is up to the caller of ocrmypdf.ocr() to set up logging as it wishes using
the Python standard library’s logging module. If this function is called,
the caller may of course make further adjustments to logging.

Regardless of whether this function is called, ocrmypdf will perform all of
its logging under the "ocrmypdf" logging namespace. In addition,
ocrmypdf imports pdfminer, which logs under "pdfminer". A library user
may wish to configure both; note that pdfminer is extremely chatty at the
log level logging.INFO.

This function does not set up the debug.log log file that the command
line interface does at certain verbosity levels. Applications should configure
their own debug logging.

	Parameters:		verbosity (Verbosity) – Verbosity level.
	progress_bar_friendly (bool) – Install the TqdmConsole log handler, which is
compatible with the tqdm progress bar; without this log messages will
overwrite the progress bar
	manage_root_logger (bool) – Configure the process’s root logger, to ensure
all log output is sent through



	Returns:	The toplevel logger for ocrmypdf (or the root logger, if we are managing it).
















           

           
          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2020, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0.
      
        
          Revision b0dcaa75.
        
      

    

  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  

  
    
       Read the Docs
      v: v11.3.0
      
    
    
      	Versions
	latest
	stable
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5


      	Downloads


      	On Read the Docs
	
            Project Home
          
	
            Builds
          


      

      Free document hosting provided by Read the Docs.

    

  




  

  
   

