

 ocrmypdf

 	Introduction
	Release notes	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.1
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v7.3.1
	v7.3.0
	v7.2.1
	v7.2.0
	v7.1.0
	v7.0.6
	v7.0.5
	v7.0.4
	v7.0.3
	v7.0.2
	v7.0.1
	v7.0.0
	v6.2.5
	v6.2.4
	v6.2.3
	v6.2.2
	v6.2.1
	v6.2.0
	v6.1.5
	v6.1.4	Notes

	v6.1.3
	v6.1.2
	v6.1.1
	v6.1.0
	v6.0.0
	v5.7.0
	v5.6.3
	v5.6.2
	v5.6.1
	v5.6.0
	v5.5
	v5.4.4
	v5.4.3
	v5.4.2
	v5.4.1
	v5.4
	v5.3.3
	v5.3.2
	v5.3.1
	v5.3
	v5.2
	v5.1
	v5.0.1
	v5.0
	v4.5.6
	v4.5.5
	v4.5.4
	v4.5.3
	v4.5.2
	v4.5.1
	v4.5
	v4.4.2
	v4.4.1
	v4.4
	v4.3.5
	v4.3.4
	v4.3.3
	v4.3.2
	v4.3.1
	v4.3
	v4.2.5
	v4.2.4
	v4.2.3
	v4.2.2
	v4.2.1
	v4.2
	v4.1.4
	v4.1.3
	v4.1.2
	v4.1
	v4.0.7
	v4.0.6
	v4.0.5
	v4.0.4
	v4.0.3
	v4.0.2
	v4.0.1
	v4.0
	v3.2.1
	v3.2
	v3.1.1
	v3.1
	v3.0
	Compatibility notes
	v2.2-stable (2014-09-29)

	Installing OCRmyPDF
	PDF optimization
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins
	Contributing guidelines

 ocrmypdf

 	Docs »
	Release notes
	

 Edit on GitHub

Release notes¶

OCRmyPDF uses semantic versioning for its
command line interface and its public API.

OCRmyPDF’s output messages are not considered part of the stable interface -
that is, output messages may be improved at any release level, so parsing them
may be unreliable. Use the API to depend on precise behavior.

The public API may be useful in scripts that launch OCRmyPDF processes or that
wish to use some of its features for working with PDFs.

Note that it is licensed under GPLv3, so scripts that
import ocrmypdf and are released publicly should probably also be
licensed under GPLv3.

v10.1.0¶

	Previously, we --clean-final would cause an unpaper-cleaned page image to
be produced twice, which was necessary in some cases but not in general. We
now take this optimization opportunity and reuse the image if possible.
	We now provide PNG files as input to unpaper, since it accepts them, instead
of generating PPM files which can be very large. This can improve performance
and temporary disk usage.
	Documentation updated for plugins.

v10.0.1¶

	Fix regression when -l lang1+lang2 is used from command line.

v10.0.0¶

Breaking changes

	Support for pdfminer.six version 20181108 has been dropped, along with a
monkeypatch that made this version work.
	Output messages are now displayed in color (when supported by the terminal)
and prefixes describing the severity of the message are removed. As such
programs that parse OCRmyPDF’s log message will need to be revised. (Please
consider using OCRmyPDF as a library instead.)
	The minimum version for certain dependencies has increased.
	Many API changes; see developer changes.
	The Python libraries pluggy and coloredlogs are now required.

New features and improvements

	PDF page scanning is now parallelized across CPUs, speeding up this phase
dramatically for files with a high page counts.
	PDF page scanning is optimized, addressing some performance regressions.
	PDF page scanning is no longer run on pages that are not selected when the
--pages argument is used.
	PDF page scanning is now independent of Ghostscript, ending our past reliance
on this occasionally unstable feature in Ghostscript.
	A plugin architecture has been added, currently allowing one to more easily
use a different OCR engine or PDF renderer from Tesseract and Ghostscript,
respectively. A plugin can also override some decisions, such changing
the OCR settings after initial scanning.
	Colored log messages.

Developer changes

	The test spoofing mechanism, used to test correct handling of failures in
Tesseract and Ghostscript, has been removed in favor of using plugins for
testing. The spoofing mechanism was fairly complex and required many special
hacks for Windows.
	Code describing the resolution in DPI of images was refactored into a
ocrmypdf.helpers.Resolution class.
	The module ocrmypdf._exec is now private to OCRmyPDF.
	The ocrmypdf.hocrtransform module has been updated to follow PEP8 naming
conventions.
	Ghostscript is no longer used for finding the location of text in PDFs, and
APIs related to this feature have been removed.
	Lots of internal reorganization to support plugins.

v9.8.2¶

	Fixed an issue where OCRmyPDF would ignore text inside Form XObject when
making certain decisions about whether a document already had text.
	Fixed file size increase warning to take overhead of small files into account.
	Added instructions for installing on Cygwin.

v9.8.1¶

	Fixed an issue where unexpected files in the %PROGRAMFILES%\gs directory
(Windows) caused an exception.
	Mark pdfminer.six 20200517 as supported.
	If jbig2enc is missing and optimization is requested, a warning is issued
instead of an error, which was the intended behavior.
	Documentation updates.

v9.8.0¶

	Fixed issue where only the first PNG (FlateDecode) image in a file would be
considered for optimization. File sizes should be improved from here on.
	Fixed a startup crash when the chosen language was Japanese (#543).
	Added options to configure polling and log level to watcher.py.

v9.7.2¶

	Fixed an issue with ocrmypdf.ocr(...language=) not accepting a list of
languages as documented.
	Updated setup.py to confirm that pdfminer.six version 20200402 is supported.

v9.7.1¶

	Fixed version check failing when used with qpdf 10.0.0.
	Added some missing type annotations.
	Updated documentation to warn about need for “ifmain” guard and Windows.

v9.7.0¶

	Fixed an error in watcher.py if OCR_JSON_SETTINGS was not defined.
	Ghostscript 9.51 is now blacklisted, due to numerous problems with this version.
	Added a workaround for a problem with “txtwrite” in Ghostscript 9.52.
	Fixed an issue where the incorrect number of threads used was shown when
OMP_THREAD_LIMIT was manipulated.
	Removed a possible performance bottlenecks for files that use hundreds to
thousands of images on the same page.
	Documentation improvements.
	Optimization will now be applied to some monochrome images that have a color
profile defined instead of only black and white.
	ICC profiles are consulted when determining the simplified colorspace of an
image.

v9.6.1¶

	Documentation improvements - thanks to many users for their contributions!

	Fixed installation instructions for ArchLinux (@pigmonkey)
	Updated installation instructions for FreeBSD and other OSes (@knobix)
	Added instructions for using Docker Compose with watchdog (@ianalexander,
@deisi)
	Other miscellany (@mb720, @toy, @caiofacchinato)
	Some scripts provided in the documentation have been migrated out so that
they can be copied out as whole files, and to ensure syntax checking
is maintained.

	Fixed an error that caused bash completions to fail on macOS. (#502, #504;
@AlexanderWillner)

	Fixed a rare case where OCRmyPDF threw an exception while processing a PDF
with the wrong object type in its /Trailer /Info. The error is now logged
and incorrect object is ignored. (#497)

	Removed potentially non-free file enron1.pdf and simplified the test that
used it.

	Removed potentially non-free file misc/media/logo.afdesign.

v9.6.0¶

	Fixed a regression with transferring metadata from the input PDF to the output
PDF in certain situations.
	pdfminer.six is now supported up to version 2020-01-24.
	Messages are explaining page rotation decisions are now shown at the standard
verbosity level again when --rotate-pages. In some previous version they
were set to debug level messages that only appeared with the parameter -v1.
	Improvements to misc/watcher.py. Thanks to @ianalexander and @svenihoney.
	Documentation improvements.

v9.5.0¶

	Added API functions to measure OCR quality.
	Modest improvements to handling PDFs with difficult/non compliant metadata.

v9.4.0¶

	Updated recommended dependency versions.
	Improvements to test coverage and changes to facilitate better measurement of
test coverage, such as when tests run in subprocesses.
	Improvements to error messages when Leptonica is not installed correctly.
	Fixed use of pytest “session scope” that may have caused some intermittent
CI failures.
	When the argument --keep-temporary-files or verbosity is set to -v1,
a debug log file is generated in the working temporary folder.

v9.3.0¶

	Improved native Windows support: we now check in the obvious places in
the “Program Files” folders installations of Tesseract and Ghostscript,
rather than relying on the user to edit PATH to specify their location.
The PATH environment variable can still be used to differentiate when
multiple installations are present or the programs are installed to non-
standard locations.
	Fixed an exception on parsing Ghostscript error messages.
	Added an improved example demonstrating how to set up a watched folder
for automated OCR processing (thanks to @ianalexander for the contribution).

v9.2.0¶

	Native Windows is now supported.
	Continuous integration moved to Azure Pipelines.
	Improved test coverage and speed of tests.
	Fixed an issue where a page that was originally a JPEG would be saved as a
PNG, increasing file size. This occurred only when a preprocessing option
was selected along with --output-type=pdf and all images on the original
page were JPEGs. Regression since v7.0.0.
	OCRmyPDF no longer depends on the QPDF executable qpdf or libqpdf.
It uses pikepdf (which in turn depends on libqpdf). Package maintainers
should adjust dependencies so that OCRmyPDF no longer calls for libqpdf on
its own. For users of Python binary wheels, this change means a separate
installation of QPDF is no longer necessary. This change is mainly to
simplify installation on Windows.
	Fixed a rare case where log messages from Tesseract would be discarded.
	Fixed incorrect function signature for pixFindPageForeground, causing
exceptions on certain platforms/Leptonica versions.

v9.1.1¶

	Expand the range of pdfminer.six versions that are supported.
	Fixed Docker build when using pikepdf 1.7.0.
	Fixed documentation to recommend using pip from get-pip.py.

v9.1.0¶

	Improved diagnostics when file size increases at output. Now warns if JBIG2
or pngquant were not available.
	pikepdf 1.7.0 is now required, to pick up changes that remove the need for
a source install on Linux systems running Python 3.8.

v9.0.5¶

	The Alpine Docker image (jbarlow83/ocrmypdf-alpine) has been dropped due to
the difficulties of supporting Alpine Linux.
	The primary Docker image (jbarlow83/ocrmypdf) has been improved to take on
the extra features that used to be exclusive to the Alpine image.
	No changes to application code.
	pdfminer.six version 20191020 is now supported.

v9.0.4¶

	Fixed compatibility with Python 3.8 (but requires source install for the moment).
	Fixed Tesseract settings for --user-words and --user-patterns.
	Changed to pikepdf 1.6.5 (for Python 3.8).
	Changed to Pillow 6.2.0 (to mitigate a security vulnerability in earlier Pillow).
	A debug message now mentions when English is automatically selected if the locale
is not English.

v9.0.3¶

	Embed an encoded version of the sRGB ICC profile in the intermediate
Postscript file (used for PDF/A conversion). Previously we included the
filename, which required Postscript to run with file access enabled. For
security, Ghostscript 9.28 enables -dSAFER and as such, no longer
permits access to any file by default. This fix is necessary for
compatibility with Ghostscript 9.28.
	Exclude a test that sometimes times out and fails in continuous integration
from the standard test suite.

v9.0.2¶

	The image optimizer now skips optimizing flate (PNG) encoded images in some
situations where the optimization effort was likely wasted.
	The image optimizer now ignores images that specify arbitrary decode arrays,
since these are rare.
	Fixed an issue that caused inversion of black and white in monochrome images.
We are not certain but the problem seems to be linked to Leptonica 1.76.0 and
older.
	Fixed some cases where the test suite failed if
English or German Tesseract language packs were not installed.
	Fixed a runtime error if the Tesseract English language is not installed.
	Improved explicit closing of Pillow images after use.
	Actually fixed of Alpine Docker image build.
	Changed to pikepdf 1.6.3.

v9.0.1¶

	Fixed test suite failing when either of optional dependencies unpaper and
pngquant were missing.
	Attempted fix of Alpine Docker image build.
	Documented that FreeBSD ports are now available.
	Changed to pikepdf 1.6.1.

v9.0.0¶

Breaking changes

	The --mask-barcodes experimental feature has been dropped due to poor
reliability and occasional crashes, both due to the underlying library that
implements this feature (Leptonica).
	The -v (verbosity level) parameter now accepts only 0, 1, and
2.
	Dropped support for Tesseract 4.00.00-alpha releases. Tesseract 4.0 beta and
later remain supported.
	Dropped the ocrmypdf-polyglot and ocrmypdf-webservice images.

New features

	Added a high level API for applications that want to integrate OCRmyPDF.
Special thanks to Martin Wind (@mawi1988) whose made significant contributions
to this effort. OCRmyPDF is GPLv3-licensed.
	Added progress bars for long-running steps. ■■■■■■■□□
	We now create linearized (“fast web view”) PDFs by default. The new parameter
--fast-web-view provides control over when this feature is applied.
	Added a new --pages feature to limit OCR to only a specific page range.
The list may contain commas or single pages, such as 1, 3, 5-11.
	When the number of pages is small compared to the number of allowed jobs, we
run Tesseract in multithreaded (OpenMP) mode when available. This should
improve performance on files with low page counts.
	Removed dependency on ruffus, and with that, the non-reentrancy
restrictions that previous made an API impossible.
	Output and logging messages overhauled so that ocrmypdf may be integrated
into applications that use the logging module.
	pikepdf 1.6.0 is required.
	Added a logo. 😊

Bug fixes

	Pages with vector artwork are treated as full color. Previously, vectors
were ignored when considering the colorspace needed to cover a page, which
could cause loss of color under certain settings.
	Test suite now spawns processes less frequently, allowing more accurate
measurement of code coverage.
	Improved test coverage.
	Fixed a rare division by zero (if optimization produced an invalid file).
	Updated Docker images to use newer versions.
	Fixed images encoded as JBIG2 with a colorspace other than /DeviceGray
were not interpreted correctly.
	Fixed a OCR text-image registration (i.e. alignment) problem when the page
when MediaBox had a nonzero corner.

v8.3.2¶

	Dropped workaround for macOS that allowed it work without pdfminer.six,
now a proper sdist release of pdfminer.six is available.
	pikepdf 1.5.0 is now required.

v8.3.1¶

	Fixed an issue where PDFs with malformed metadata would be rendered as
blank pages. #398.

v8.3.0¶

	Improved the strategy for updating pages when a new image of the page
was produced. We now attempt to preserve more content from the
original file, for annotations in particular.
	For PDFs with more than 100 pages and a sequence where one PDF page
was replaced and one or more subsequent ones were skipped, an
intermediate file would be corrupted while grafting OCR text, causing
processing to fail. This is a regression, likely introduced in
v8.2.4.
	Previously, we resized the images produced by Ghostscript by a small
number of pixels to ensure the output image size was an exactly what
we wanted. Having discovered a way to get Ghostscript to produce the
exact image sizes we require, we eliminated the resizing step.
	Command line completions for bash are now available, in addition
to fish, both in misc/completion. Package maintainers, please
install these so users can take advantage.
	Updated requirements.
	pikepdf 1.3.0 is now required.

v8.2.4¶

	Fixed a false positive while checking for a certain type of PDF that
only Acrobat can read. We now more accurately detect Acrobat-only
PDFs.
	OCRmyPDF holds fewer open file handles and is more prompt about
releasing those it no longer needs.
	Minor optimization: we no longer traverse the table of contents to
ensure all references in it are resolved, as changes to libqpdf have
made this unnecessary.
	pikepdf 1.2.0 is now required.

v8.2.3¶

	Fixed that --mask-barcodes would occasionally leave a unwanted
temporary file named junkpixt in the current working folder.
	Fixed (hopefully) handling of Leptonica errors in an environment
where a non-standard sys.stderr is present.
	Improved help text for --verbose.

v8.2.2¶

	Fixed a regression from v8.2.0, an exception that occurred while
attempting to report that unpaper or another optional dependency
was unavailable.
	In some cases, ocrmypdf [-c|--clean] failed to exit with an error
when unpaper is not installed.

v8.2.1¶

	This release was canceled.

v8.2.0¶

	A major improvement to our Docker image is now available thanks to
hard work contributed by @mawi12345. The new Docker image,
ocrmypdf-alpine, is based on Alpine Linux, and includes most of the
functionality of three existed images in a smaller package. This
image will replace the main Docker image eventually but for now all
are being built. See documentation for
details.
	Documentation reorganized especially around the use of Docker images.
	Fixed a problem with PDF image optimization, where the optimizer
would unnecessarily decompress and recompress PNG images, in some
cases losing the benefits of the quantization it just had just
performed. The optimizer is now capable of embedding PNG images into
PDFs without transcoding them.
	Fixed a minor regression with lossy JBIG2 image optimization. All
JBIG2 candidates images were incorrectly placed into a single
optimization group for the whole file, instead of grouping pages
together. This usually makes a larger JBIG2Globals dictionary and
results in inferior compression, so it worked less well than
designed. However, quality would not be impacted. Lossless JBIG2 was
entirely unaffected.
	Updated dependencies, including pikepdf to 1.1.0. This fixes
#358.
	The install-time version checks for certain external programs have
been removed from setup.py. These tests are now performed at
run-time.
	The non-standard option to override install-time checks
(setup.py install --force) is now deprecated and prints a
warning. It will be removed in a future release.

v8.1.0¶

	Added a feature, --unpaper-args, which allows passing arbitrary
arguments to unpaper when using --clean or --clean-final.
The default, very conservative unpaper settings are suppressed.
	The argument --clean-final now implies --clean. It was
possible to issue --clean-final on its before this, but it would
have no useful effect.
	Fixed an exception on traversing corrupt table of contents entries
(specifically, those with invalid destination objects)
	Fixed an issue when using --tesseract-timeout and image
processing features on a file with more than 100 pages.
#347
	OCRmyPDF now always calls os.nice(5) to signal to operating
systems that it is a background process.

v8.0.1¶

	Fixed an exception when parsing PDFs that are missing a required
field. #325
	pikepdf 1.0.5 is now required, to address some other PDF parsing
issues.

v8.0.0¶

No major features. The intent of this release is to sever support for
older versions of certain dependencies.

Breaking changes

	Dropped support for Tesseract 3.x. Tesseract 4.0 or newer is now
required.
	Dropped support for Python 3.5.
	Some ocrmypdf.pdfa APIs that were deprecated in v7.x were
removed. This functionality has been moved to pikepdf.

Other changes

	Fixed an unhandled exception when attempting to mask barcodes.
#322
	It is now possible to use ocrmypdf without pdfminer.six, to support
distributions that do not have it or cannot currently use it (e.g.
Homebrew). Downstream maintainers should include pdfminer.six if
possible.
	A warning is now issue when PDF/A conversion removes some XMP
metadata from the input PDF. (Only a “whitelist” of certain XMP
metadata types are allowed in PDF/A.)
	Fixed several issues that caused PDF/As to be produced with
nonconforming XMP metadata (would fail validation with veraPDF).
	Fixed some instances where invalid DocumentInfo from a PDF cause XMP
metadata creation to fail.
	Fixed a few documentation problems.
	pikepdf 1.0.2 is now required.

v7.4.0¶

	--force-ocr may now be used with the new --threshold and
--mask-barcodes features
	pikepdf >= 0.9.1 is now required.
	Changed metadata handling to pikepdf 0.9.1. As a result, metadata
handling of non-ASCII characters in Ghostscript 9.25 or later is
fixed.
	chardet >= 3.0.4 is temporarily listed as required. pdfminer.six
depends on it, but the most recent release does not specify this
requirement.
(#326)
	python-xmp-toolkit and libexempi are no longer required.
	A new Docker image is now being provided for users who wish to access
OCRmyPDF over a simple HTTP interface, instead of the command line.
	Increase tolerance of PDFs that overflow or underflow the PDF
graphics stack.
(#325)

v7.3.1¶

	Fixed performance regression from v7.3.0; fast page analysis was not
selected when it should be.
	Fixed a few exceptions related to the new --mask-barcodes feature
and improved argument checking
	Added missing detection of TrueType fonts that lack a Unicode mapping

v7.3.0¶

	Added a new feature --redo-ocr to detect existing OCR in a file,
remove it, and redo the OCR. This may be particularly helpful for
anyone who wants to take advantage of OCR quality improvements in
Tesseract 4.0. Note that OCR added by OCRmyPDF before version 3.0
cannot be detected since it was not properly marked as invisible text
in the earliest versions. OCR that constructs a font from visible
text, such as Adobe Acrobat’s ClearScan.
	OCRmyPDF’s content detection is generally more sophisticated. It
learns more about the contents of each PDF and makes better
recommendations:	OCRmyPDF can now detect when a PDF contains text that cannot be
mapped to Unicode (meaning it is readable to human eyes but
copy-pastes as gibberish). In these cases it recommends
--force-ocr to make the text searchable.
	PDFs containing vector objects are now rendered at more
appropriate resolution for OCR.
	We now exit with an error for PDFs that contain Adobe LiveCycle
Designer’s dynamic XFA forms. Currently the open source community
does not have tools to work with these files.
	OCRmyPDF now warns when a PDF that contains Adobe AcroForms, since
such files probably do not need OCR. It can work with these files.

	Added three new experimental features to improve OCR quality in
certain conditions. The name, syntax and behavior of these arguments
is subject to change. They may also be incompatible with some other
features.	--remove-vectors which strips out vector graphics. This can
improve OCR quality since OCR will not search artwork for readable
text; however, it currently removes “text as curves” as well.
	--mask-barcodes to detect and suppress barcodes in files. We
have observed that barcodes can interfere with OCR because they
are “text-like” but not actually textual.
	--threshold which uses a more sophisticated thresholding
algorithm than is currently in use in Tesseract OCR. This works
around a known issue in Tesseract
4.0
with dark text on bright backgrounds.

	Fixed an issue where an error message was not reported when the
installed Ghostscript was very old.
	The PDF optimizer now saves files with object streams enabled when
the optimization level is --optimize 1 or higher (the default).
This makes files a little bit smaller, but requires PDF 1.5. PDF 1.5
was first released in 2003 and is broadly supported by PDF viewers,
but some rudimentary PDF parsers such as PyPDF2 do not understand
object streams. You can use the command line tool
qpdf --object-streams=disable or
pikepdf library to remove
them.
	New dependency: pdfminer.six 20181108. Note this is a fork of the
Python 2-only pdfminer.
	Deprecation notice: At the end of 2018, we will be ending support for
Python 3.5 and Tesseract 3.x. OCRmyPDF v7 will continue to work with
older versions.

v7.2.1¶

	Fix compatibility with an API change in pikepdf 0.3.5.
	A kludge to support Leptonica versions older than 1.72 in the test
suite was dropped. Older versions of Leptonica are likely still
compatible. The only impact is that a portion of the test suite will
be skipped.

v7.2.0¶

Lossy JBIG2 behavior change

A user reported that ocrmypdf was in fact using JBIG2 in lossy
compression mode. This was not the intended behavior. Users should
review the technical concerns with JBIG2 in lossy
mode
and decide if this is a concern for their use case.

JBIG2 lossy mode does achieve higher compression ratios than any other
monochrome compression technology; for large text documents the savings
are considerable. JBIG2 lossless still gives great compression ratios
and is a major improvement over the older CCITT G4 standard.

Only users who have reviewed the concerns with JBIG2 in lossy mode
should opt-in. As such, lossy mode JBIG2 is only turned on when the new
argument --jbig2-lossy is issued. This is independent of the setting
for --optimize.

Users who did not install an optional JBIG2 encoder are unaffected.

(Thanks to user ‘bsdice’ for reporting this issue.)

Other issues

	When the image optimizer quantizes an image to 1 bit per pixel, it
will now attempt to further optimize that image as CCITT or JBIG2,
instead of keeping it in the “flate” encoding which is not efficient
for 1 bpp images.
(#297)
	Images in PDFs that are used as soft masks (i.e. transparency masks
or alpha channels) are now excluded from optimization.
	Fixed handling of Tesseract 4.0-rc1 which now accepts invalid
Tesseract configuration files, which broke the test suite.

v7.1.0¶

	Improve the performance of initial text extraction, which is done to
determine if a file contains existing text of some kind or not. On
large files, this initial processing is now about 20x times faster.
(#299)
	pikepdf 0.3.3 is now required.
	Fixed issue
#231, a
problem with JPEG2000 images where image metadata was only available
inside the JPEG2000 file.
	Fixed some additional Ghostscript 9.25 compatibility issues.
	Improved handling of KeyboardInterrupt error messages.
(#301)
	README.md is now served in GitHub markdown instead of
reStructuredText.

v7.0.6¶

	Blacklist Ghostscript 9.24, now that 9.25 is available and fixes many
regressions in 9.24.

v7.0.5¶

	Improve capability with Ghostscript 9.24, and enable the JPEG
passthrough feature when this version in installed.
	Ghostscript 9.24 lost the ability to set PDF title, author, subject
and keyword metadata to Unicode strings. OCRmyPDF will set ASCII
strings and warn when Unicode is suppressed. Other software may be
used to update metadata. This is a short term work around.
	PDFs generated by Kodak Capture Desktop, or generally PDFs that
contain indirect references to null objects in their table of
contents, would have an invalid table of contents after processing by
OCRmyPDF that might interfere with other viewers. This has been
fixed.
	Detect PDFs generated by Adobe LiveCycle, which can only be displayed
in Adobe Acrobat and Reader currently. When these are encountered,
exit with an error instead of performing OCR on the “Please wait”
error message page.

v7.0.4¶

	Fix exception thrown when trying to optimize a certain type of PNG
embedded in a PDF with the -O2
	Update to pikepdf 0.3.2, to gain support for optimizing some
additional image types that were previously excluded from
optimization (CMYK and grayscale). Fixes
#285.

v7.0.3¶

	Fix issue
#284, an error
when parsing inline images that have are also image masks, by
upgrading pikepdf to 0.3.1

v7.0.2¶

	Fix a regression with --rotate-pages on pages that already had
rotations applied.
(#279)
	Improve quality of page rotation in some cases by rasterizing a
higher quality preview image.
(#281)

v7.0.1¶

	Fix compatibility with img2pdf >= 0.3.0 by rejecting input images
that have an alpha channel
	Add forward compatibility for pikepdf 0.3.0 (unrelated to img2pdf)
	Various documentation updates for v7.0.0 changes

v7.0.0¶

	The core algorithm for combining OCR layers with existing PDF pages
has been rewritten and improved considerably. PDFs are no longer
split into single page PDFs for processing; instead, images are
rendered and the OCR results are grafted onto the input PDF. The new
algorithm uses less temporary disk space and is much more performant
especially for large files.
	New dependency: pikepdf.
pikepdf is a powerful new Python PDF library driving the latest
OCRmyPDF features, built on the QPDF C++ library (libqpdf).
	New feature: PDF optimization with -O or --optimize. After
OCR, OCRmyPDF will perform image optimizations relevant to OCR PDFs.	If a JBIG2 encoder is available, then monochrome images will be
converted, with the potential for huge savings on large black and
white images, since JBIG2 is far more efficient than any other
monochrome (bi-level) compression. (All known US patents related
to JBIG2 have probably expired, but it remains the responsibility
of the user to supply a JBIG2 encoder such as
jbig2enc. OCRmyPDF does not
implement JBIG2 encoding.)
	If pngquant is installed, OCRmyPDF will optionally use it to
perform lossy quantization and compression of PNG images.
	The quality of JPEGs can also be lowered, on the assumption that a
lower quality image may be suitable for storage after OCR.
	This image optimization component will eventually be offered as an
independent command line utility.
	Optimization ranges from -O0 through -O3, where 0
disables optimization and 3 implements all options. 1, the
default, performs only safe and lossless optimizations. (This is
similar to GCC’s optimization parameter.) The exact type of
optimizations performed will vary over time.

	Small amounts of text in the margins of a page, such as watermarks,
page numbers, or digital stamps, will no longer prevent the rest of a
page from being OCRed when --skip-text is issued. This behavior
is based on a heuristic.
	Removed features	The deprecated --pdf-renderer tesseract PDF renderer was
removed.
	-g, the option to generate debug text pages, was removed
because it was a maintenance burden and only worked in isolated
cases. HOCR pages can still be previewed by running the
hocrtransform.py with appropriate settings.

	Removed dependencies	PyPDF2
	defusedxml
	PyMuPDF

	The sandwich PDF renderer can be used with all supported versions
of Tesseract, including that those prior to v3.05 which don’t support
-c textonly. (Tesseract v4.0.0 is recommended and more
efficient.)
	--pdf-renderer auto option and the diagnostics used to select a
PDF renderer now work better with old versions, but may make
different decisions than past versions.
	If everything succeeds but PDF/A conversion fails, a distinct return
code is now returned (ExitCode.pdfa_conversion_failed (10)) where
this situation previously returned
ExitCode.invalid_output_pdf (4). The latter is now returned only
if there is some indication that the output file is invalid.
	Notes for downstream packagers	There is also a new dependency on python-xmp-toolkit which in
turn depends on libexempi3.
	It may be necessary to separately pip install pycparser to
avoid another Python 3.7
issue.

v6.2.5¶

	Disable a failing test due to Tesseract 4.0rc1 behavior change.
Previously, Tesseract would exit with an error message if its
configuration was invalid, and OCRmyPDF would intercept this message.
Now Tesseract issues a warning, which OCRmyPDF v6.2.5 may relay or
ignore. (In v7.x, OCRmyPDF will respond to the warning.)
	This release branch no longer supports using the optional PyMuPDF
installation, since it was removed in v7.x.
	This release branch no longer supports macOS. macOS users should
upgrade to v7.x.

v6.2.4¶

	Backport Ghostscript 9.25 compatibility fixes, which removes support
for setting Unicode metadata
	Backport blacklisting Ghostscript 9.24
	Older versions of Ghostscript are still supported

v6.2.3¶

	Fix compatibility with img2pdf >= 0.3.0 by rejecting input images
that have an alpha channel
	This version will be included in Ubuntu 18.10

v6.2.2¶

	Backport compatibility fixes for Python 3.7 and ruffus 2.7.0 from
v7.0.0
	Backport fix to ignore masks when deciding what colors are on a page
	Backport some minor improvements from v7.0.0: better argument
validation and warnings about the Tesseract 4.0.0 --user-words
regression

v6.2.1¶

	Fix recent versions of Tesseract (after 4.0.0-beta1) not being
detected as supporting the sandwich renderer
(#271).

v6.2.0¶

	Docker: The Docker image ocrmypdf-tess4 has been removed. The
main Docker images, ocrmypdf and ocrmypdf-polyglot now use
Ubuntu 18.04 as a base image, and as such Tesseract 4.0.0-beta1 is
now the Tesseract version they use. There is no Docker image based on
Tesseract 3.05 anymore.
	Creation of PDF/A-3 is now supported. However, there is no ability to
attach files to PDF/A-3.
	Lists more reasons why the file size might grow.
	Fix issue
#262,
--remove-background error on PDFs contained colormapped
(paletted) images.
	Fix another XMP metadata validation issue, in cases where the input
file’s creation date has no timezone and the creation date is not
overridden.

v6.1.5¶

	Fix issue
#253, a
possible division by zero when using the hocr renderer.
	Fix incorrectly formatted <xmp:ModifyDate> field inside XMP
metadata for PDF/As. veraPDF flags this as a PDF/A validation
failure. The error is caused the timezone and final digit of the
seconds of modified time to be omitted, so at worst the modification
time stamp is rounded to the nearest 10 seconds.

v6.1.4¶

	Fix issue #248
--clean argument may remove OCR from left column of text on
certain documents. We now set --layout none to suppress this.
	The test cache was updated to reflect the change above.
	Change test suite to accommodate Ghostscript 9.23’s new ability to
insert JPEGs into PDFs without transcoding.
	XMP metadata in PDFs is now examined using defusedxml for safety.
	If an external process exits with a signal when asked to report its
version, we now print the system error message instead of suppressing
it. This occurred when the required executable was found but was
missing a shared library.
	qpdf 7.0.0 or newer is now required as the test suite can no longer
pass without it.

Notes¶

	An apparent regression in Ghostscript
9.23 will
cause some ocrmypdf output files to become invalid in rare cases; the
workaround for the moment is to set --force-ocr.

v6.1.3¶

	Fix issue
#247,
/CreationDate metadata not copied from input to output.
	A warning is now issued when Python 3.5 is used on files with a large
page count, as this case is known to regress to single core
performance. The cause of this problem is unknown.

v6.1.2¶

	Upgrade to PyMuPDF v1.12.5 which includes a more complete fix to
#239.
	Add defusedxml dependency.

v6.1.1¶

	Fix text being reported as found on all pages if PyMuPDF is not
installed.

v6.1.0¶

	PyMuPDF is now an optional but recommended dependency, to alleviate
installation difficulties on platforms that have less access to
PyMuPDF than the author anticipated. (For version 6.x only) install
OCRmyPDF with pip install ocrmypdf[fitz] to use it to its full
potential.
	Fix FileExistsError that could occur if OCR timed out while it
was generating the output file.
(#218)
	Fix table of contents/bookmarks all being redirected to page 1 when
generating a PDF/A (with PyMuPDF). (Without PyMuPDF the table of
contents is removed in PDF/A mode.)
	Fix “RuntimeError: invalid key in dict” when table of
contents/bookmarks titles contained the character).
(#239)
	Added a new argument --skip-repair to skip the initial PDF repair
step if the PDF is already well-formed (because another program
repaired it).

v6.0.0¶

	The software license has been changed to GPLv3. Test resource files
and some individual sources may have other licenses.
	OCRmyPDF now depends on
PyMuPDF.
Including PyMuPDF is the primary reason for the change to GPLv3.
	Other backward incompatible changes	The OCRMYPDF_TESSERACT, OCRMYPDF_QPDF, OCRMYPDF_GS and
OCRMYPDF_UNPAPER environment variables are no longer used.
Change PATH if you need to override the external programs
OCRmyPDF uses.
	The ocrmypdf package has been moved to src/ocrmypdf to
avoid issues with accidental import.
	The function ocrmypdf.exec.get_program was removed.
	The deprecated module ocrmypdf.pageinfo was removed.
	The --pdf-renderer tess4 alias for sandwich was removed.

	Fixed an issue where OCRmyPDF failed to detect existing text on
pages, depending on how the text and fonts were encoded within the
PDF. (#233,
#232)
	Fixed an issue that caused dramatic inflation of file sizes when
--skip-text --output-type pdf was used. OCRmyPDF now removes
duplicate resources such as fonts, images and other objects that it
generates.
(#237)
	Improved performance of the initial page splitting step. Originally
this step was not believed to be expensive and ran in a process.
Large file testing revealed it to be a bottleneck, so it is now
parallelized. On a 700 page file with quad core machine, this change
saves about 2 minutes.
(#234)
	The test suite now includes a cache that can be used to speed up test
runs across platforms. This also does not require computing
checksums, so it’s faster.
(#217)

v5.7.0¶

	Fixed an issue that caused poor CPU utilization on machines with more
than 4 cores when running Tesseract 4. (Related to issue
#217.)
	The ‘hocr’ renderer has been improved. The ‘sandwich’ and ‘tesseract’
renderers are still better for most use cases, but ‘hocr’ may be
useful for people who work with the PDF.js renderer in English/ASCII
languages.
(#225)	It now formats text in a matter that is easier for certain PDF
viewers to select and extract copy and paste text. This should
help macOS Preview and PDF.js in particular.
	The appearance of selected text and behavior of selecting text is
improved.
	The PDF content stream now uses relative moves, making it more
compact and easier for viewers to determine when two words on the
same line.
	It can now deal with text on a skewed baseline.
	Thanks to @cforcey for the pull request, @jbreiden for many
helpful suggestions, @ctbarbour for another round of improvements,
and @acaloiaro for an independent review.

v5.6.3¶

	Suppress two debug messages that were too verbose

v5.6.2¶

	Development branch accidentally tagged as release. Do not use.

v5.6.1¶

	Fix issue
#219: change
how the final output file is created to avoid triggering permission
errors when the output is a special file such as /dev/null
	Fix test suite failures due to a qpdf 8.0.0 regression and Python
3.5’s handling of symlink
	The “encrypted PDF” error message was different depending on the type
of PDF encryption. Now a single clear message appears for all types
of PDF encryption.
	ocrmypdf is now in Homebrew. Homebrew users are advised to the
version of ocrmypdf in the official homebrew-core formulas rather
than the private tap.
	Some linting

v5.6.0¶

	Fix issue
#216: preserve
“text as curves” PDFs without rasterizing file
	Related to the above, messages about rasterizing are more consistent
	For consistency versions minor releases will now get the trailing .0
they always should have had.

v5.5¶

	Add new argument --max-image-mpixels. Pillow 5.0 now raises an
exception when images may be decompression bombs. This argument can
be used to override the limit Pillow sets.
	Fix output page cropped when using the sandwich renderer and OCR is
skipped on a rotated and image-processed page
	A warning is now issued when old versions of Ghostscript are used in
cases known to cause issues with non-Latin characters
	Fix a few parameter validation checks for -output-type pdfa-1 and
pdfa-2

v5.4.4¶

	Fix issue
#181: fix
final merge failure for PDFs with more pages than the system file
handle limit (ulimit -n)
	Fix issue
#200: an
uncommon syntax for formatting decimal numbers in a PDF would cause
qpdf to issue a warning, which ocrmypdf treated as an error. Now this
the warning is relayed.
	Fix an issue where intermediate PDFs would be created at version 1.3
instead of the version of the original file. It’s possible but
unlikely this had side effects.
	A warning is now issued when older versions of qpdf are used since
issues like
#200 cause
qpdf to infinite-loop
	Address issue
#140: if
Tesseract outputs invalid UTF-8, escape it and print its message
instead of aborting with a Unicode error
	Adding previously unlisted setup requirement, pytest-runner
	Update documentation: fix an error in the example script for Synology
with Docker images, improved security guidance, advised
pip install --user

v5.4.3¶

	If a subprocess fails to report its version when queried, exit
cleanly with an error instead of throwing an exception
	Added test to confirm that the system locale is Unicode-aware and
fail early if it’s not
	Clarified some copyright information
	Updated pinned requirements.txt so the homebrew formula captures more
recent versions

v5.4.2¶

	Fixed a regression from v5.4.1 that caused sidecar files to be
created as empty files

v5.4.1¶

	Add workaround for Tesseract v4.00alpha crash when trying to obtain
orientation and the latest language packs are installed

v5.4¶

	Change wording of a deprecation warning to improve clarity
	Added option to generate PDF/A-1b output if desired
(--output-type pdfa-1); default remains PDF/A-2b generation
	Update documentation

v5.3.3¶

	Fixed missing error message that should occur when trying to force
--pdf-renderer sandwich on old versions of Tesseract
	Update copyright information in test files
	Set system LANG to UTF-8 in Dockerfiles to avoid UTF-8 encoding
errors

v5.3.2¶

	Fixed a broken test case related to language packs

v5.3.1¶

	Fixed wrong return code given for missing Tesseract language packs
	Fixed “brew audit” crashing on Travis when trying to auto-brew

v5.3¶

	Added --user-words and --user-patterns arguments which are
forwarded to Tesseract OCR as words and regular expressions
respective to use to guide OCR. Supplying a list of subject-domain
words should assist Tesseract with resolving words.
(#165)
	Using a non Latin-1 language with the “hocr” renderer now warns about
possible OCR quality and recommends workarounds
(#176)
	Output file path added to error message when that location is not
writable
(#175)
	Otherwise valid PDFs with leading whitespace at the beginning of the
file are now accepted

v5.2¶

	When using Tesseract 3.05.01 or newer, OCRmyPDF will select the
“sandwich” PDF renderer by default, unless another PDF renderer is
specified with the --pdf-renderer argument. The previous behavior
was to select --pdf-renderer=hocr.
	The “tesseract” PDF renderer is now deprecated, since it can cause
problems with Ghostscript on Tesseract 3.05.00
	The “tess4” PDF renderer has been renamed to “sandwich”. “tess4” is
now a deprecated alias for “sandwich”.

v5.1¶

	Files with pages larger than 200” (5080 mm) in either dimension are
now supported with --output-type=pdf with the page size preserved
(in the PDF specification this feature is called UserUnit scaling).
Due to Ghostscript limitations this is not available in conjunction
with PDF/A output.

v5.0.1¶

	Fixed issue
#169,
exception due to failure to create sidecar text files on some
versions of Tesseract 3.04, including the jbarlow83/ocrmypdf Docker
image

v5.0¶

	Backward incompatible changes

	Support for Python 3.4 dropped. Python 3.5 is now required.
	Support for Tesseract 3.02 and 3.03 dropped. Tesseract 3.04 or
newer is required. Tesseract 4.00 (alpha) is supported.
	The OCRmyPDF.sh script was removed.

	Add a new feature, --sidecar, which allows creating “sidecar”
text files which contain the OCR results in plain text. These OCR
text is more reliable than extracting text from PDFs. Closes
#126.

	New feature: --pdfa-image-compression, which allows overriding
Ghostscript’s lossy-or-lossless image encoding heuristic and making
all images JPEG encoded or lossless encoded as desired. Fixes
#163.

	Fixed issue
#143, added
--quiet to suppress “INFO” messages

	Fixed issue
#164, a typo

	Removed the command line parameters -n and --just-print since
they have not worked for some time (reported as Ubuntu bug
#1687308)

v4.5.6¶

	Fixed issue
#156,
‘NoneType’ object has no attribute ‘getObject’ on pages with no
optional /Contents record. This should resolve all issues related to
pages with no /Contents record.
	Fixed issue
#158, ocrmypdf
now stops and terminates if Ghostscript fails on an intermediate
step, as it is not possible to proceed.
	Fixed issue
#160,
exception thrown on certain invalid arguments instead of error
message

v4.5.5¶

	Automated update of macOS homebrew tap
	Fixed issue
#154, KeyError
‘/Contents’ when searching for text on blank pages that have no
/Contents record. Note: incomplete fix for this issue.

v4.5.4¶

	Fix --skip-big raising an exception if a page contains no images
(#152) (thanks
to @TomRaz)
	Fix an issue where pages with no images might trigger “cannot write
mode P as JPEG”
(#151)

v4.5.3¶

	Added a workaround for Ghostscript 9.21 and probably earlier versions
would fail with the error message “VMerror -25”, due to a Ghostscript
bug in XMP metadata handling
	High Unicode characters (U+10000 and up) are no longer accepted for
setting metadata on the command line, as Ghostscript may not handle
them correctly.
	Fixed an issue where the tess4 renderer would duplicate content
onto output pages if tesseract failed or timed out
	Fixed tess4 renderer not recognized when lossless reconstruction
is possible

v4.5.2¶

	Fix issue
#147.
--pdf-renderer tess4 --clean will produce an oversized page
containing the original image in the bottom left corner, due to loss
DPI information.
	Make “using Tesseract 4.0” warning less ominous
	Set up machinery for homebrew OCRmyPDF tap

v4.5.1¶

	Fix issue
#137,
proportions of images with a non-square pixel aspect ratio would be
distorted in output for --force-ocr and some other combinations
of flags

v4.5¶

	PDFs containing “Form XObjects” are now supported (issue
#134; PDF
reference manual 8.10), and images they contain are taken into
account when determining the resolution for rasterizing
	The Tesseract 4 Docker image no longer includes all languages,
because it took so long to build something would tend to fail
	OCRmyPDF now warns about using --pdf-renderer tesseract with
Tesseract 3.04 or lower due to issues with Ghostscript corrupting the
OCR text in these cases

v4.4.2¶

	The Docker images (ocrmypdf, ocrmypdf-polyglot, ocrmypdf-tess4) are
now based on Ubuntu 16.10 instead of Debian stretch	This makes supporting the Tesseract 4 image easier
	This could be a disruptive change for any Docker users who built
customized these images with their own changes, and made those
changes in a way that depends on Debian and not Ubuntu

	OCRmyPDF now prevents running the Tesseract 4 renderer with Tesseract
3.04, which was permitted in v4.4 and v4.4.1 but will not work

v4.4.1¶

	To prevent a TIFF output
error caused
by img2pdf >= 0.2.1 and Pillow <= 3.4.2, dependencies have been
tightened
	The Tesseract 4.00 simultaneous process limit was increased from 1 to
2, since it was observed that 1 lowers performance
	Documentation improvements to describe the --tesseract-config
feature
	Added test cases and fixed error handling for --tesseract-config
	Tweaks to setup.py to deal with issues in the v4.4 release

v4.4¶

	Tesseract 4.00 is now supported on an experimental basis.	A new rendering option --pdf-renderer tess4 exploits Tesseract
4’s new text-only output PDF mode. See the documentation on PDF
Renderers for details.
	The --tesseract-oem argument allows control over the Tesseract
4 OCR engine mode (tesseract’s --oem). Use
--tesseract-oem 2 to enforce the new LSTM mode.
	Fixed poor performance with Tesseract 4.00 on Linux

	Fixed an issue that caused corruption of output to stdout in some
cases
	Removed test for Pillow JPEG and PNG support, as the minimum
supported version of Pillow now enforces this
	OCRmyPDF now tests that the intended destination file is writable
before proceeding
	The test suite now requires pytest-helpers-namespace to run (but
not install)
	Significant code reorganization to make OCRmyPDF re-entrant and
improve performance. All changes should be backward compatible for
the v4.x series.	However, OCRmyPDF’s dependency “ruffus” is not re-entrant, so no
Python API is available. Scripts should continue to use the
command line interface.

v4.3.5¶

	Update documentation to confirm Python 3.6.0 compatibility. No code
changes were needed, so many earlier versions are likely supported.

v4.3.4¶

	Fixed “decimal.InvalidOperation: quantize result has too many digits”
for high DPI images

v4.3.3¶

	Fixed PDF/A creation with Ghostscript 9.20 properly
	Fixed an exception on inline stencil masks with a missing optional
parameter

v4.3.2¶

	Fixed a PDF/A creation issue with Ghostscript 9.20 (note: this fix
did not actually work)

v4.3.1¶

	Fixed an issue where pages produced by the “hocr” renderer after a
Tesseract timeout would be rotated incorrectly if the input page was
rotated with a /Rotate marker
	Fixed a file handle leak in LeptonicaErrorTrap that would cause a
“too many open files” error for files around hundred pages of pages
long when --deskew or --remove-background or other Leptonica
based image processing features were in use, depending on the system
value of ulimit -n
	Ability to specify multiple languages for multilingual documents is
now advertised in documentation
	Reduced the file sizes of some test resources
	Cleaned up debug output
	Tesseract caching in test cases is now more cautious about false
cache hits and reproducing exact output, not that any problems were
observed

v4.3¶

	New feature --remove-background to detect and erase the
background of color and grayscale images
	Better documentation
	Fixed an issue with PDFs that draw images when the raster stack depth
is zero
	ocrmypdf can now redirect its output to stdout for use in a shell
pipeline	This does not improve performance since temporary files are still
used for buffering
	Some output validation is disabled in this mode

v4.2.5¶

	Fixed an issue
(#100) with
PDFs that omit the optional /BitsPerComponent parameter on images
	Removed non-free file milk.pdf

v4.2.4¶

	Fixed an error
(#90) caused by
PDFs that use stencil masks properly
	Fixed handling of PDFs that try to draw images or stencil masks
without properly setting up the graphics state (such images are now
ignored for the purposes of calculating DPI)

v4.2.3¶

	Fixed an issue with PDFs that store page rotation (/Rotate) in an
indirect object
	Integrated a few fixes to simplify downstream packaging (Debian)	The test suite no longer assumes it is installed
	If running Linux, skip a test that passes Unicode on the command
line

	Added a test case to check explicit masks and stencil masks
	Added a test case for indirect objects and linearized PDFs
	Deprecated the OCRmyPDF.sh shell script

v4.2.2¶

	Improvements to documentation

v4.2.1¶

	Fixed an issue where PDF pages that contained stencil masks would
report an incorrect DPI and cause Ghostscript to abort
	Implemented stdin streaming

v4.2¶

	ocrmypdf will now try to convert single image files to PDFs if they
are provided as input
(#15)	This is a basic convenience feature. It only supports a single
image and always makes the image fill the whole page.
	For better control over image to PDF conversion, use img2pdf
(one of ocrmypdf’s dependencies)

	New argument --output-type {pdf|pdfa} allows disabling
Ghostscript PDF/A generation	pdfa is the default, consistent with past behavior
	pdf provides a workaround for users concerned about the
increase in file size from Ghostscript forcing JBIG2 images to
CCITT and transcoding JPEGs
	pdf preserves as much as it can about the original file,
including problems that PDF/A conversion fixes

	PDFs containing images with “non-square” pixel aspect ratios, such as
200x100 DPI, are now handled and converted properly (fixing a bug
that caused to be cropped)
	--force-ocr rasterizes pages even if they contain no images	supports users who want to use OCRmyPDF to reconstruct text
information in PDFs with damaged Unicode maps (copy and paste text
does not match displayed text)
	supports reinterpreting PDFs where text was rendered as curves for
printing, and text needs to be recovered
	fixes issue
#82

	Fixes an issue where, with certain settings, monochrome images in
PDFs would be converted to 8-bit grayscale, increasing file size
(#79)
	Support for Ubuntu 12.04 LTS “precise” has been dropped in favor of
(roughly) Ubuntu 14.04 LTS “trusty”	Some Ubuntu “PPAs” (backports) are needed to make it work

	Support for some older dependencies dropped	Ghostscript 9.15 or later is now required (available in Ubuntu
trusty with backports)
	Tesseract 3.03 or later is now required (available in Ubuntu
trusty)

	Ghostscript now runs in “safer” mode where possible

v4.1.4¶

	Bug fix: monochrome images with an ICC profile attached were
incorrectly converted to full color images if lossless reconstruction
was not possible due to other settings; consequence was increased
file size for these images

v4.1.3¶

	More helpful error message for PDFs with version 4 security handler
	Update usage instructions for Windows/Docker users
	Fix order of operations for matrix multiplication (no effect on most
users)
	Add a few leptonica wrapper functions (no effect on most users)

v4.1.2¶

	Replace IEC sRGB ICC profile with Debian’s sRGB (from
icc-profiles-free) which is more compatible with the MIT license
	More helpful error message for an error related to certain types of
malformed PDFs

v4.1¶

	--rotate-pages now only rotates pages when reasonably confidence
in the orientation. This behavior can be adjusted with the new
argument --rotate-pages-threshold
	Fixed problems in error checking if unpaper is uninstalled or
missing at run-time
	Fixed problems with “RethrownJobError” errors during error handling
that suppressed the useful error messages

v4.0.7¶

	Minor correction to Ghostscript output settings

v4.0.6¶

	Update install instructions
	Provide a sRGB profile instead of using Ghostscript’s

v4.0.5¶

	Remove some verbose debug messages from v4.0.4
	Fixed temporary that wasn’t being deleted
	DPI is now calculated correctly for cropped images, along with other
image transformations
	Inline images are now checked during DPI calculation instead of
rejecting the image

v4.0.4¶

Released with verbose debug message turned on. Do not use. Skip to
v4.0.5.

v4.0.3¶

New features

	Page orientations detected are now reported in a summary comment

Fixes

	Show stack trace if unexpected errors occur
	Treat “too few characters” error message from Tesseract as a reason
to skip that page rather than abort the file
	Docker: fix blank JPEG2000 issue by insisting on Ghostscript versions
that have this fixed

v4.0.2¶

Fixes

	Fixed compatibility with Tesseract 3.04.01 release, particularly its
different way of outputting orientation information
	Improved handling of Tesseract errors and crashes
	Fixed use of chmod on Docker that broke most test cases

v4.0.1¶

Fixes

	Fixed a KeyError if tesseract fails to find page orientation
information

v4.0¶

New features

	Automatic page rotation (-r) is now available. It uses ignores
any prior rotation information on PDFs and sets rotation based on the
dominant orientation of detectable text. This feature is fairly
reliable but some false positives occur especially if there is not
much text to work with.
(#4)
	Deskewing is now performed using Leptonica instead of unpaper.
Leptonica is faster and more reliable at image deskewing than
unpaper.

Fixes

	Fixed an issue where lossless reconstruction could cause some pages
to be appear incorrectly if the page was rotated by the user in
Acrobat after being scanned (specifically if it a /Rotate tag)
	Fixed an issue where lossless reconstruction could misalign the
graphics layer with respect to text layer if the page had been
cropped such that its origin is not (0, 0)
(#49)

Changes

	Logging output is now much easier to read
	--deskew is now performed by Leptonica instead of unpaper
(#25)
	libffi is now required
	Some changes were made to the Docker and Travis build environments to
support libffi
	--pdf-renderer=tesseract now displays a warning if the Tesseract
version is less than 3.04.01, the planned release that will include
fixes to an important OCR text rendering bug in Tesseract 3.04.00.
You can also manually install ./share/sharp2.ttf on top of pdf.ttf in
your Tesseract tessdata folder to correct the problem.

v3.2.1¶

Changes

	Fixed issue #47
“convert() got and unexpected keyword argument ‘dpi’” by upgrading to
img2pdf 0.2
	Tweaked the Dockerfiles

v3.2¶

New features

	Lossless reconstruction: when possible, OCRmyPDF will inject text
layers without otherwise manipulating the content and layout of a PDF
page. For example, a PDF containing a mix of vector and raster
content would see the vector content preserved. Images may still be
transcoded during PDF/A conversion. (--deskew and
--clean-final disable this mode, necessarily.)
	New argument --tesseract-pagesegmode allows you to pass page
segmentation arguments to Tesseract OCR. This helps for two column
text and other situations that confuse Tesseract.
	Added a new “polyglot” version of the Docker image, that generates
Tesseract with all languages packs installed, for the polyglots among
us. It is much larger.

Changes

	JPEG transcoding quality is now 95 instead of the default 75. Bigger
file sizes for less degradation.

v3.1.1¶

Changes

	Fixed bug that caused incorrect page size and DPI calculations on
documents with mixed page sizes

v3.1¶

Changes

	Default output format is now PDF/A-2b instead of PDF/A-1b
	Python 3.5 and macOS El Capitan are now supported platforms - no
changes were needed to implement support
	Improved some error messages related to missing input files
	Fixed issue #20
- uppercase .PDF extension not accepted
	Fixed an issue where OCRmyPDF failed to text that certain pages
contained previously OCR’ed text, such as OCR text produced by
Tesseract 3.04
	Inserts /Creator tag into PDFs so that errors can be traced back to
this project
	Added new option --pdf-renderer=auto, to let OCRmyPDF pick the
best PDF renderer. Currently it always chooses the ‘hocrtransform’
renderer but that behavior may change.
	Set up Travis CI automatic integration testing

v3.0¶

New features

	Easier installation with a Docker container or Python’s pip
package manager
	Eliminated many external dependencies, so it’s easier to setup
	Now installs ocrmypdf to /usr/local/bin or equivalent for
system-wide access and easier typing
	Improved command line syntax and usage help (--help)
	Tesseract 3.03+ PDF page rendering can be used instead for better
positioning of recognized text (--pdf-renderer tesseract)
	PDF metadata (title, author, keywords) are now transferred to the
output PDF
	PDF metadata can also be set from the command line (--title,
etc.)
	Automatic repairs malformed input PDFs if possible
	Added test cases to confirm everything is working
	Added option to skip extremely large pages that take too long to OCR
and are often not OCRable (e.g. large scanned maps or diagrams);
other pages are still processed (--skip-big)
	Added option to kill Tesseract OCR process if it seems to be taking
too long on a page, while still processing other pages
(--tesseract-timeout)
	Less common colorspaces (CMYK, palette) are now supported by
conversion to RGB
	Multiple images on the same PDF page are now supported

Changes

	New, robust rewrite in Python 3.4+ with
ruffus pipelines
	Now uses Ghostscript 9.14’s improved color conversion model to
preserve PDF colors
	OCR text is now rendered in the PDF as invisible text. Previous
versions of OCRmyPDF incorrectly rendered visible text with an image
on top.
	All “tasks” in the pipeline can be executed in parallel on any
available CPUs, increasing performance
	The -o DPI argument has been phased out, in favor of
--oversample DPI, in case we need -o OUTPUTFILE in the future
	Removed several dependencies, so it’s easier to install. We no longer
use:	GNU parallel
	ImageMagick
	Python 2.7
	Poppler
	MuPDF tools
	shell scripts
	Java and JHOVE
	libxml2

	Some new external dependencies are required or optional, compared to
v2.x:	Ghostscript 9.14+
	qpdf 5.0.0+
	Unpaper 6.1 (optional)
	some automatically managed Python packages

Release candidates^

	rc9:	fix issue
#118:
report error if ghostscript iccprofiles are missing
	fixed another issue related to
#111: PDF
rasterized to palette file
	add support image files with a palette
	don’t try to validate PDF file after an exception occurs

	rc8:	fix issue
#111:
exception thrown if PDF is missing DocumentInfo dictionary

	rc7:	fix error when installing direct from pip, “no such file
‘requirements.txt’”

	rc6:	dropped libxml2 (Python lxml) since Python 3’s internal XML parser
is sufficient
	set up Docker container
	fix Unicode errors if recognized text contains Unicode characters
and system locale is not UTF-8

	rc5:	dropped Java and JHOVE in favour of qpdf
	improved command line error output
	additional tests and bug fixes
	tested on Ubuntu 14.04 LTS

	rc4:	dropped MuPDF in favour of qpdf
	fixed some installer issues and errors in installation
instructions
	improve performance: run Ghostscript with multithreaded rendering
	improve performance: use multiple cores by default
	bug fix: checking for wrong exception on process timeout

	rc3: skipping version number intentionally to avoid confusion with
Tesseract
	rc2: first release for public testing to test-PyPI, Github
	rc1: testing release process

Compatibility notes¶

	./OCRmyPDF.sh script is still available for now
	Stacking the verbosity option like -vvv is no longer supported
	The configuration file config.sh has been removed. Instead, you
can feed a file to the arguments for common settings:

ocrmypdf input.pdf output.pdf @settings.txt

where settings.txt contains one argument per line, for example:

-l
deu
--author
A. Merkel
--pdf-renderer
tesseract

Fixes

	Handling of filenames containing spaces: fixed

Notes and known issues

	Some dependencies may work with lower versions than tested, so try
overriding dependencies if they are “in the way” to see if they work.
	--pdf-renderer tesseract will output files with an incorrect page
size in Tesseract 3.03, due to a bug in Tesseract.
	PDF files containing “inline images” are not supported and won’t be
for the 3.0 release. Scanned images almost never contain inline
images.

v2.2-stable (2014-09-29)¶

OCRmyPDF versions 1 and 2 were implemented as shell scripts. OCRmyPDF
3.0+ is a fork that gradually replaced all shell scripts with Python
while maintaining the existing command line arguments. No one is
maintaining old versions.

For details on older versions, see the final version of its release
notes.

 Next

 Previous

 © Copyright 2019, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0.

 Revision 24b6a4ad.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: v10.1.0

 	Versions
	latest
	stable
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

