

 ocrmypdf

 	Introduction
	Release notes
	Installing OCRmyPDF
	Installing additional language packs
	Installing the JBIG2 encoder

Usage

	Cookbook
	PDF optimization
	OCRmyPDF Docker image
	Advanced features
	Batch processing
	Online deployments
	Performance
	PDF security issues
	Common error messages

Developers

	Using the OCRmyPDF API
	Plugins	Script plugins
	Packaged plugins
	Setuptools plugins
	Plugin requirements
	Plugin hooks
	Examples	Suppressing or overriding other plugins
	Custom command line arguments
	Execution and progress reporting
	Applying special behavior before processing
	PDF page to image
	Modifying intermediate images
	OCR engine
	PDF/A production
	PDF optimization

	API reference
	Design notes
	Contributing guidelines
	Maintainer notes

 ocrmypdf

 	
	Plugins
	
 Edit on GitHub

Plugins¶

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

You can use plugins to customize the behavior of OCRmyPDF at certain points of
interest.

Currently, it is possible to:

	add new command line arguments

	override the decision for whether or not to perform OCR on a particular file

	modify the image is about to be sent for OCR

	modify the page image before it is converted to PDF

	replace the Tesseract OCR with another OCR engine that has similar behavior

	replace Ghostscript with another PDF to image converter (rasterizer) or
PDF/A generator

OCRmyPDF plugins are based on the Python pluggy package and conform to its
conventions. Note that: plugins installed with as setuptools entrypoints are
not checked currently, because OCRmyPDF assumes you may not want to enable
plugins for all files.

Script plugins¶

Script plugins may be called from the command line, by specifying the name of a file.
Script plugins may be convenient for informal or “one-off” plugins, when a certain
batch of files needs a special processing step for example.

ocrmypdf --plugin ocrmypdf_example_plugin.py input.pdf output.pdf

Multiple plugins may be installed by issuing the --plugin argument multiple times.

Packaged plugins¶

Installed plugins may be installed into the same virtual environment as OCRmyPDF
is installed into. They may be invoked using Python standard module naming.
If you are intending to distribute a plugin, please package it.

ocrmypdf --plugin ocrmypdf_fancypants.pockets.contents input.pdf output.pdf

OCRmyPDF does not automatically import plugins, because the assumption is that
plugins affect different files differently and you may not want them activated
all the time. The command line or ocrmypdf.ocr(plugin='...') must call
for them.

Third parties that wish to distribute packages for ocrmypdf should package them
as packaged plugins, and these modules should begin with the name ocrmypdf_
similar to pytest packages such as pytest-cov (the package) and
pytest_cov (the module).

Note

We recommend plugin authors name their plugins with the prefix
ocrmypdf- (for the package name on PyPI) and ocrmypdf_ (for the
module), just like pytest plugins. At the same time, please make it clear
that your package is not official.

Setuptools plugins¶

You can also create a plugin that OCRmyPDF will always automatically load if both are
installed in the same virtual environment, using a setuptools entrypoint.

Your package’s pyproject.toml would need to contain the following, for a plugin
named ocrmypdf-exampleplugin:

[project]
name = "ocrmypdf-exampleplugin"

[project.entry-points."ocrmypdf"]
exampleplugin = "exampleplugin.pluginmodule"

equivalent setup.cfg
[options.entry_points]
ocrmypdf =
 exampleplugin = exampleplugin.pluginmodule

Plugin requirements¶

OCRmyPDF generally uses multiple worker processes. When a new worker is started,
Python will import all plugins again, including all plugins that were imported earlier.
This means that the global state of a plugin in one worker will not be shared with
other workers. As such, plugin hook implementations should be stateless, relying
only on their inputs. Hook implementations may use their input parameters to
to obtain a reference to shared state prepared by another hook implementation.
Plugins must expect that other instances of the plugin will be running
simultaneously.

The context object that is passed to many hooks can be used to share information
about a file being worked on. Plugins must write private, plugin-specific data to
a subfolder named {options.work_folder}/ocrmypdf-plugin-name. Plugins MAY
read and write files in options.work_folder, but should be aware that their
semantics are subject to change.

OCRmyPDF will delete options.work_folder when it has finished OCRing
a file, unless invoked with --keep-temporary-files.

The documentation for some plugin hooks contain a detailed description of the
execution context in which they will be called.

Plugins should be prepared to work whether executed in worker threads or worker
processes. Generally, OCRmyPDF uses processes, but has a semi-hidden threaded
argument that simplifies debugging.

Plugin hooks¶

A plugin may provide the following hooks. Hooks must be decorated with
ocrmypdf.hookimpl, for example:

from ocrmpydf import hookimpl

@hookimpl
def add_options(parser):
 pass

The following is a complete list of hooks that are available, and when
they are called.

Note on firstresult hooks

If multiple plugins install implementations for this hook, they will be called in
the reverse of the order in which they are installed (i.e., last plugin wins).
When each hook implementation is called in order, the first implementation that
returns a value other than None will “win” and prevent execution of all other
hooks. As such, you cannot “chain” a series of plugin filters together in this
way. Instead, a single hook implementation should be responsible for any such
chaining operations.

Examples¶

	OCRmyPDF’s test suite contains several plugins that are used to simulate certain
test conditions.

	ocrmypdf-papermerge is
a production plugin that integrates OCRmyPDF and the Papermerge document
management system.

Suppressing or overriding other plugins¶

Custom command line arguments¶

Execution and progress reporting¶

Applying special behavior before processing¶

PDF page to image¶

Modifying intermediate images¶

OCR engine¶

PDF/A production¶

PDF optimization¶

 Previous
 Next

 © Copyright 2023, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..
 Revision 2005f622.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v16.0.1post1
	v16.0.1
	v16.0.0
	v15.4.4
	v15.4.3
	v15.4.2
	v15.4.1
	v15.4.0
	v15.3.1
	v15.3.0
	v15.2.0
	v15.1.0
	v15.0.2
	v15.0.1
	v15.0.0.post1
	v14.4.0
	v14.3.0
	v14.2.1
	v14.2.0
	v14.1.0
	v14.0.4
	v14.0.3
	v14.0.2
	v14.0.1
	v14.0.0
	v13.7.0
	v13.6.2
	v13.6.1
	v13.6.0
	v13.5.0
	v13.4.7
	v13.4.6
	v13.4.5
	v13.4.4
	v13.4.3
	v13.4.2
	v13.4.1
	v13.4.0
	v13.3.0
	v13.2.0
	v13.1.1
	v13.1.0
	v13.0.0
	v12.7.2
	v12.7.1
	v12.7.0
	v12.6.0
	v12.5.0
	v12.4.0
	v12.3.3
	v12.3.2
	v12.3.1
	v12.3.0
	v12.2.0
	v12.1.0
	v12.0.3
	v12.0.2
	v12.0.1
	v12.0.0
	v11.7.3
	v11.7.2
	v11.7.1
	v11.7.0
	v11.6.2
	v11.6.1
	v11.6.0
	v11.5.0
	v11.4.5
	v11.4.4
	v11.4.3
	v11.4.2
	v11.4.1
	v11.4.0
	v11.3.4
	v11.3.3
	v11.3.2
	v11.3.1
	v11.3.0
	v11.2.1
	v11.2.0
	v11.1.2
	v11.1.1
	v11.1.0
	v11.0.2
	v11.0.1
	v11.0.0
	v10.3.3
	v10.3.2
	v10.3.1
	v10.3.0
	v10.2.1
	v10.2.0
	v10.1.0
	v10.0.1
	v10.0.0
	v9.8.2
	v9.8.1
	v9.8.0
	v9.7.2
	v9.7.1
	v9.7.0
	v9.6.1
	v9.6.0
	v9.5.0
	v9.4.0
	v9.3.0
	v9.2.0
	v9.1.1
	v9.1.0
	v9.0.5
	v9.0.4
	v9.0.3
	v9.0.2
	v9.0.1
	v9.0.0
	v8.3.2
	v8.3.1
	v8.3.0
	v8.2.4
	v8.2.3
	v8.2.2
	v8.2.0
	v8.1.0
	v8.0.1
	v8.0.0
	v7.4.0
	v6.2.5

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

