ocrmypdf Documentation
Release 14.1.0

James R. Barlow

2023-04-14

10

11

12

13

14

15

16

17

18

19

Introduction

Release notes

Installing OCRmyPDF

PDF optimization

Installing additional language packs
Installing the JBIG2 encoder
Cookbook

OCRmyPDF Docker image
Advanced features

Batch processing
Performance

PDF security issues
Common error messages
Using the OCRmyPDF API
Plugins

API Reference

Contributing guidelines
Maintainer notes

Indices and tables

Python Module Index

Index

CONTENTS

57
69
71
73
75
81
85
91
99
101
105
107
113
125
133
135
137
139

141

ocrmypdf Documentation, Release 14.1.0

OCRmyPDF adds an optical character recognition (OCR) text layer to scanned PDF files, allowing them to be searched.

PDF is the best format for storing and exchanging scanned documents. Unfortunately, PDFs can be difficult to modity.
OCRmyPDF makes it easy to apply image processing and OCR to existing PDFs.

CONTENTS 1

ocrmypdf Documentation, Release 14.1.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

OCRmyPDF is an application and library that adds text “layers” to images in PDFs, making scanned image PDFs
searchable. It uses OCR to guess what text is contained in images. It is written in Python. OCRmyPDF supports
plugins that allow customization of its processing steps, and is very tolerant of PDFs that contain scanned images and
“born digital” content that needs no text recognition.

1.1 About OCR

Optical character recognition is technology that converts images of typed or handwritten text, such as in a scanned
document, to computer text that can be selected, searched and copied.

OCRmyPDF uses Tesseract, the best available open source OCR engine, to perform OCR.

1.2 About PDFs

PDFs are page description files that attempts to preserve a layout exactly. They contain vector graphics that can contain
raster objects such as scanned images. Because PDFs can contain multiple pages (unlike many image formats) and can
contain fonts and text, it is a good format for exchanging scanned documents.

A PDF page might contain multiple images, even if it only appears to have one image. Some scanners or scanning
software will segment pages into monochromatic text and color regions for example, to improve the compression ratio
and appearance of the page.

Rasterizing a PDF is the process of generating corresponding raster images. OCR engines like Tesseract work with
images, not scalable vector graphics or mixed raster-vector-text graphics such as PDF.

1.3 About PDF/A

PDF/A is an ISO-standardized subset of the full PDF specification that is designed for archiving (the ‘A’ stands for
Archive). PDF/A differs from PDF primarily by omitting features that would make it difficult to read the file in the
future, such as embedded Javascript, video, audio and references to external fonts. All fonts and resources needed
to interpret the PDF must be contained within it. Because PDF/A disables Javascript and other types of embedded
content, it is probably more secure.

There are various conformance levels and versions, such as “PDF/A-2b”.

Generally speaking, the best format for scanned documents is PDF/A. Some governments and jurisdictions, US Courts
in particular, mandate the use of PDF/A for scanned documents.

https://en.wikipedia.org/wiki/Optical_character_recognition
https://github.com/tesseract-ocr/tesseract
http://vector-conversions.com/vectorizing/raster_vs_vector.html
https://en.wikipedia.org/wiki/PDF/A
https://pdfblog.com/2012/02/13/what-is-pdfa/

ocrmypdf Documentation, Release 14.1.0

Since most people who scan documents are interested in reading them indefinitely into the future, OCRmyPDF gener-
ates PDF/A-2b by default.

PDF/A has a few drawbacks. Some PDF viewers include an alert that the file is a PDF/A, which may confuse some
users. It also tends to produce larger files than PDF, because it embeds certain resources even if they are commonly
available. PDF/A files can be digitally signed, but may not be encrypted, to ensure they can be read in the future.
Fortunately, converting from PDF/A to a regular PDF is trivial, and any PDF viewer can view PDF/A.

1.4 What OCRmyPDF does

OCRmyPDF analyzes each page of a PDF to determine the colorspace and resolution (DPI) needed to capture all of
the information on that page without losing content. It uses Ghostscript to rasterize the page, and then performs OCR
on the rasterized image to create an OCR “layer”. The layer is then grafted back onto the original PDF.

While one can use a program like Ghostscript or ImageMagick to get an image and put the image through Tesseract,
that actually creates a new PDF and many details may be lost. OCRmyPDF can produce a minimally changed PDF as
output.

OCRmyPDF also provides some image processing options, like deskew, which improves the appearance of files and
quality of OCR. When these are used, the OCR layer is grafted onto the processed image instead.

By default, OCRmyPDF produces archival PDFs — PDF/A, which are a stricter subset of PDF features designed for
long term archives. If regular PDFs are desired, this can be disabled with --output-type pdf.

1.5 Why you shouldn’t do this manually

A PDF is similar to an HTML file, in that it contains document structure along with images. Sometimes a PDF does
nothing more than present a full page image, but often there is additional content that would be lost.

A manual process could work like either of these:

1. Rasterize each page as an image, OCR the images, and combine the output into a PDF. This preserves the layout
of each page, but resamples all images (possibly losing quality, increasing file size, introducing compression
artifacts, etc.).

2. Extract each image, OCR, and combine the output into a PDF. This loses the context in which images are used
in the PDF, meaning that cropping, rotation and scaling of pages may be lost. Some scanned PDFs use multiple
images segmented into black and white, grayscale and color regions, with stencil masks to prevent overlap, as
this can enhance the appearance of a file while reducing file size. Clearly, reassembling these images will be
easy. This also loses and text or vector art on any pages in a PDF with both scanned and pure digital content.

In the case of a PDF that is nothing other than a container of images (no rotation, scaling, cropping, one image per
page), the second approach can be lossless.

OCRmyPDF uses several strategies depending on input options and the input PDF itself, but generally speaking it
rasterizes a page for OCR and then grafts the OCR back onto the original. As such it can handle complex PDFs and
still preserve their contents as much as possible.

OCRmyPDF also supports a many, many edge cases that have cropped over several years of development. We support
PDF features like images inside of Form XObjects, and pages with UserUnit scaling. We support rare image formats
like non-monochrome 1-bit images. We warn about files you may not to OCR. Thanks to pikepdf and QPDF, we auto-
repair PDFs that are damaged. (Not that you need to know what any of these are! You should be able to throw any PDF
at it.)

4 Chapter 1. Introduction

http://ghostscript.com/

ocrmypdf Documentation, Release 14.1.0

1.6

Limitations

OCRmyPDF is limited by the Tesseract OCR engine. As such it experiences these limitations, as do any other programs
that rely on Tesseract:

The OCR is not as accurate as commercial OCR solutions.

It is not capable of recognizing handwriting.

It may find gibberish and report this as OCR output.

If a document contains languages outside of those given in the -1 LANG arguments, results may be poor.

It is not always good at analyzing the natural reading order of documents. For example, it may fail to recognize
that a document contains two columns, and may try to join text across columns.

Poor quality scans may produce poor quality OCR. Garbage in, garbage out.

It does not expose information about what font family text belongs to.

OCRmyPDF is also limited by the PDF specification:

PDF encodes the position of text glyphs but does not encode document structure. There is no markup that divides
a document in sections, paragraphs, sentences, or even words (since blank spaces are not represented). As such
all elements of document structure including the spaces between words must be derived heuristically. Some PDF
viewers do a better job of this than others.

Because some popular open source PDF viewers have a particularly hard time with spaces between words,
OCRmyPDF appends a space to each text element as a workaround (when using --pdf-renderer hocr).
While this mixes document structure with graphical information that ideally should be left to the PDF viewer to
interpret, it improves compatibility with some viewers and does not cause problems for better ones.

Ghostscript also imposes some limitations:

PDFs containing JBIG2-encoded content will be converted to CCITT Group4 encoding, which has lower com-
pression ratios, if Ghostscript PDF/A is enabled.

PDFs containing JPEG 2000-encoded content will be converted to JPEG encoding, which may introduce com-
pression artifacts, if Ghostscript PDF/A is enabled.

Ghostscript may transcode grayscale and color images, either lossy to lossless or lossless to lossy, based on
an internal algorithm. This behavior can be suppressed by setting --pdfa-image-compression to jpeg or
lossless to set all images to one type or the other. Ghostscript has no option to maintain the input image’s
format. (Modern Ghostscript can copy JPEG images without transcoding them.)

Ghostscript’s PDF/A conversion removes any XMP metadata that is not one of the standard XMP metadata
namespaces for PDFs. In particular, PRISM Metadata is removed.

Ghostscript’s PDF/A conversion seems to remove or deactivate hyperlinks and other active content.

You can use --output-type pdf to disable PDF/A conversion and produce a standard, non-archival PDF.

Regarding OCRmyPDF itself:

PDFs that use transparency are not currently represented in the test suite

1.6. Limitations 5

ocrmypdf Documentation, Release 14.1.0

1.7 Similar programs

To the author’s knowledge, OCRmyPDF is the most feature-rich and thoroughly tested command line OCR PDF con-
version tool. If it does not meet your needs, contributions and suggestions are welcome. If not, consider one of these
similar open source programs:

* pdf2pdfocr
 pdfsandwich

Ghostscript recently added three “pdfocr’” output devices. They work by rasterizing all content and converting all pages
to a single colour space.

1.8 Web front-ends

The Docker image ocrmypdf provides a web service front-end that allows files to submitted over HTTP and the results
“downloaded”. This is an HTTP server intended to simplify web services deployments; it is not intended to be deployed
on the public internet and no real security measures to speak of.

In addition, the following third-party integrations are available:
» Nextcloud OCR is a free software plugin for the Nextcloud private cloud software

OCRmyPDF is not designed to be secure against malware-bearing PDFs (see Using OCRmyPDF online). Users should
ensure they comply with OCRmyPDF’s licenses and the licenses of all dependencies. In particular, OCRmyPDF
requires Ghostscript, which is licensed under AGPLv3.

6 Chapter 1. Introduction

https://github.com/janis91/ocr

CHAPTER
TWO

RELEASE NOTES

OCRmyPDF uses semantic versioning for its command line interface and its public APL.

OCRmyPDF’s output messages are not considered part of the stable interface - that is, output messages may be improved
at any release level, so parsing them may be unreliable. Use the API to depend on precise behavior.

The public API may be useful in scripts that launch OCRmyPDF processes or that wish to use some of its features for
working with PDFs.

The most recent release of OCRmyPDF is . Any newer versions referred to in these notes may exist the main branch
but have not been tagged yet.

Note: Attention maintainers: these release notes may be updated with information about a forthcoming release that
has not been tagged yet. A release is only official when it’s tagged and posted to PyPL

2.1 v14.1.0

* Added --tesseract-non-ocr-timeout. This allows using Tesseract’s deskew and other non-OCR features
while disabling OCR using --tesseract-timeout 0.

e Added --tesseract-downsample-large-images. This downsamples larges images that exceed the maxi-
mum image size Tesseract can handle. Large images may still take a long time to process, but this allows them
to be processed if that is desired.

 Fixed #1082, an issue with snap packaged building.

* Change linter to ruff, fix lint errors, update documentation.

2.2 v14.0.4

* Fixed #1066#1075, an exception when processing certain malformed PDFs.

http://semver.org/
https://github.com/ocrmypdf/OCRmyPDF/issues/1082
https://github.com/ocrmypdf/OCRmyPDF/issues/1066
https://github.com/ocrmypdf/OCRmyPDF/issues/1075

ocrmypdf Documentation, Release 14.1.0

2.3 v14.0.3

* Fixed #1068, avoid deleting /dev/null when running as root.

¢ Other documentation fixes.

2.4 v14.0.2

* Fixed #1052, an exception on attempting to process certain nonconforming PDFs.
* Explicitly documented that Windows 32-bit is no longer supported.
* Fixed source installation instructions.

¢ Other documentation fixes.

2.5 v14.0.1

¢ Fixed some version checks done with smart version comparison.

* Added missing jbig2dec to Docker image.

2.6 v14.0.0

* Dropped support for Python 3.7.

* Dropped support generally speaking, all dependencies older than what Ubuntu 20.04 provides.
* Ghostscript 9.50 or newer is now required. Shims to support old versions were removed.

e Tesseract 4.1.1 or newer is now required. Shims to support old versions were removed.

* Docker image now uses Tesseract 5.

* Dropped setup.cfg configuration for pyproject.toml.

* Removed deprecation exception PdfMergeFailedError.

* A few more public domain test files were removed or replaced. We are aiming for 100% compliance with SPDX
and generally towards simplifying copyright.

2.7 v13.7.0

* Fixed an exception when attempting to run and Tesseract is not installed.

» Changed to SPDX license tracking and information files.

8 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/1068
https://github.com/ocrmypdf/OCRmyPDF/issues/1052

ocrmypdf Documentation, Release 14.1.0

2.8 v13.6.2

* Added a shim to prevent an “error during error handling” for Python 3.7 and 3.8.
* Modernized some type annotations.

* Improved annotations on our _windows module to help IDEs and mypy figure out what we’re doing.

2.9 v13.6.1

* Require setuptools-scm 7.0.5 to avoid possible issues with source distributions in earlier versions of setuptools-
scm.

 Suppress a spurious warning, improve tests, improve typing and other miscellany.

2.10 v13.6.0

* Added anew initialize plugin hook, making it possible to suppress built-in plugins more easily, among other
possibilities.

* Fixed an issue where unpaper would exit with a “wrong stream” error, probably related to images with an odd
integer width. #887#665

2.11 v13.5.0

e Added a new optimize_pdf plugin hook, making it possible to create plugins that replace or enhance
OCRmyPDF’s PDF optimizer.

* Removed all max version restrictions. Our new policy is to blacklist known-bad releases and only block known-
bad versions of dependencies.

¢ The naming schema for object that holds all OCR text that OCRmyPDF inserts has changed. This has always
been an implementation detail (and remains so), but possibly, someone was relying on it and would appreciate
the heads-up.

e Cleanup.

2.12 v13.4.7

¢ Fixed PermissionError when cleaning up temporary files in rare cases. #974
* Fixed PermissionError when calling os.nice on platforms that lack it. #973

* Suppressed some warnings from libxmp during tests.

2.8. v13.6.2 9

https://github.com/ocrmypdf/OCRmyPDF/issues/887
https://github.com/ocrmypdf/OCRmyPDF/issues/665
https://github.com/ocrmypdf/OCRmyPDF/issues/974
https://github.com/ocrmypdf/OCRmyPDF/issues/973

ocrmypdf Documentation, Release 14.1.0

2.13 v13.4.6

» Convert error on corrupt ICC profiles into a warning. Thanks to @oscherler.

2.14 v13.4.5

* Remove upper bound on pdfminer.six version.

¢ Documentation.

2.15 v13.4.4

» Updated pdfminer.six version.

* Docker image changed to Ubuntu 22.04 now that it is released and provides the dependencies we need. This
seems more consistent than our recent change to Debian.

2.16 v13.4.3

* Fix error on pytest.skip() with older versions of pytest.

* Documentation updates.

2.17 v13.4.2

* Worked around a major regression in Ghostscript 9.56.0 where all OCR text is stripped out of the PDF. It simply
removes all text, even generated by software other than OCRmyPDF. Fortunately, we can ask Ghostscript 9.56.0
to use its old behavior that worked correctly for our purposes. Users must avoid the combination (Ghostscript
9.56.0, ocrmypdf <13.4.2) since older versions of OCRmyPDF have no way of detecting that this particular
version of Ghostscript removes all OCR text.

* Marked pdfminer 20220319 as supported.
* Fixed some deprecation warnings from recent versions of Pillow and pytest.
¢ Test suite now covers Python 3.10 (Python 3.10 worked fine before, but was not being tested).

* Docker image now uses debian:bookworm-slim as the base image to fix the Docker image build.

2.18 v13.4.1

* Temporarily make threads rather than processes the default executor worker, due to a persistent deadlock issue
when processes are used. Add a new command line argument --no-use-threads to disable this.

10 Chapter 2. Release notes

https://bugs.ghostscript.com/show_bug.cgi?id=705187

ocrmypdf Documentation, Release 14.1.0

2.19 v13.4.0

* Fixed test failures when using pikepdf 5.0.0.

* Various improvements to the optimizer. In particular, we now recognize PDF images that are encoded with both
deflate (PNG) and DCT (JPEG), and also produce PDF with images compressed with deflate and DCT, since this
often yields file size improvements compared to plain DCT.

2.20 v13.3.0

* Made a harmless but “scary” exception after failing to optimize an image less scary.

Added a warning if a page image is too large for unpaper to clean. The image is passed through without cleaning.
This is due to a hard-coded limitation in a C library used by unpaper so it cannot be rectified easily.

* We now use better default settings when calling img2pdf.
* We no longer try to optimize images that we failed to save in certain situations.
* We now account for some differences in text output from Tesseract 5 compared to Tesseract 4.

* Better handling of Ghostscript producing empty images when attempting to rasterize page images.

2.21 v13.2.0

* Removed all runtime uses of distutils since it is deprecated in standard library. We previous used distutils.
version to examine version numbers of dependencies at run time, and now use packaging.version for this.
This is a new dependency.

* Fixed an error message advising the user that Ghostscript was not installed being suppressed when this condition
actually happens.

* Fixed an issue with incorrect page number and totals being displayed in the progress bar. This was purely a
display/presentation issue. #876.

2.22 v13.1.1

* Fixed issue with attempting to deskew a blank page on Tesseract 5. #868.

2.23 v13.1.0

* Changed to using Python concurrent.futures-based parallel execution instead of pools, since futures have now
exceed pools in features.

* Ifachild worker is terminated (perhaps by the operating system or the user killing it in a task manager), the parallel
task will fail an error message. Previously, the main ocrmypdf process would “hang” indefinitely, waiting for the
child to report.

* Added new argument --tesseract-thresholding to provide control over Tesseract 5’s threshold parameter.

* Documentation updates and changes. Better documentation for --output-type none, added a few releases
ago. Removed some obsolete documentation.

2.19. v13.4.0 11

https://github.com/ocrmypdf/OCRmyPDF/issues/876
https://github.com/ocrmypdf/OCRmyPDF/issues/868

ocrmypdf Documentation, Release 14.1.0

Improved bash completions - thanks to @FPille.

2.24 v13.0.0

Breaking changes

Fixes

The deprecated module ocrmypdf.leptonica has been removed.

We no longer depend on Leptonica (liblept) or CFFI (1ibffi, python3-cffi). (Note that Tesseract still
requires Leptonica; OCRmyPDF no longer directly uses this library.)

The argument --remove-background is temporarily disabled while we search for an alternative to the Lepton-
ica implementation of this feature.

The --threshold argument has been removed, since this also depended on Leptonica. Tesseract 5.x has imple-
mented improvements to thresholding, so this feature will be redundant anyway.

--deskew was previous calculated by a Leptonica algorithm. We now use a feature of Tesseract to find the
appropriate the angle to deskew a page. The deskew angle according to Tesseract may differ from Leptonica’s
algorithm. At least in theory, Tesseract’s deskew angle is informed by a more complex analysis than Leptonica,
so this should improve results in general. We also use Pillow to perform the deskewing, which may affect the
appearance of the image compared to Leptonica.

Support for Python 3.6 was dropped, since this release is approaching end of life.

We now require pikepdf 4.0 or newer. This, in turn, means that OCRmyPDF requires a system compatible
with the manylinux2014 specification. This change was “forced” by Pillow not releasing manylinux2010 wheels
anymore.

We no longer provide requirements.txt-style files. Use pip install ocrmypdf[...] instead.

Bumped required versions of several libraries.

Fixed an issue where OCRmyPDF failed to find Ghostscript on Windows even when installed, and would exit
with an error.

By removing Leptonica, we fixed all issues related to Leptonica on Apple Silicon or Leptonica failing to import
on Windows.

2.25 v12.7.2

Fixed “invalid version number” error for Tesseract packaging with nonstandard version “5.0.0-rc1.20211030”.
Fixed use of deprecated importlib.resources.read_binary.

Replace some uses of string paths with pathlib.Path.

Fixed a leaked file handle when using --output-type none.

Removed shims to support versions of pikepdf that are no longer supported.

12

Chapter 2. Release notes

ocrmypdf Documentation, Release 14.1.0

2.26 v12.7.1

* Declare support for pdfminer.six v20211012.

2.27 v12.7.0

* Fixed test suite failure when using pikepdf 3.2.0 that was compiled with pybind11 2.8.0. #843
 Improve advice to user about using --max-image-mpixels if OCR fails for this reason.
¢ Minor documentation fixes. (Thanks to @mara004.)

* Don’t require importlib-metadata and importlib-resources backports on versions of Python where the standard
library implementation is sufficient. (Thanks to Marco Genasci.)

2.28 v12.6.0

* Implemented --output-type=none to skip producing PDFs for applications that only want sidecar files (#787).
* Fixed ambiguities in descriptions of behavior of --jbig2-lossy.

* Various improvements to documentation.

2.29 v12.5.0

* Fixed build failure for the combination of PyPy 3.6 and pikepdf 3.0. This combination can work in a source build
but does not work with wheels.

* Accepted bot that wanted to upgrade our deprecated requirements.txt.

* Documentation updates.

* Replace pkg_resources and install dependency on setuptools with importlib-metadata and importlib-resources.
* Fixed regression in hocrtransform causing text to be omitted when this renderer was used.

* Fixed some typing errors.

2.30 v12.4.0

* When grafting text layers, use pikepdf’s unparse_content_stream if available.
¢ Confirmed support for pluggy 1.0. (Thanks @QuLogic.)

 Fixed some typing issues, improved pre-commit settings, and fixed issues flagged by linters.

PyPy 7.3.3 (=Python 3.6) is now supported. Note that PyPy does not necessarily run faster, because the vast
majority of OCRmyPDF’s execution time is spent running OCR or generally executing native code. However,
PyPy may bring speed improvements in some areas.

2.26. v12.7.1 13

https://github.com/ocrmypdf/OCRmyPDF/issues/843
https://github.com/ocrmypdf/OCRmyPDF/issues/787

ocrmypdf Documentation, Release 14.1.0

2.31 v12.3.3

» watcher.py: fixed interpretation of boolean env vars (#821).
* Adjust CI scripts to test Tesseract 5 betas.

* Document our support for the Tesseract 5 betas.

2.32 v12.3.2

* Indicate support for flask 2.x, watcher 2.x (#815#816).

2.33 vi12.3.1

* Fixed issue with selection of text when using the hOCR renderer (#813).

¢ Fixed build errors with the Docker image by upgrading to a newer Ubuntu. Also set the timezone of this image
to UTC.

2.34 v12.3.0

* Fixed a regression introduced in Pillow 8.3.0. Pillow no longer rounds DPI for image resolutions. We now
account for this (#802).

¢ We no longer use some API calls that are deprecated in the latest versions of pikepdf.
» Improved error message when a language is requested that doesn’t look like a typical ISO 639-2 code.

* Fixed some tests that attempted to symlink on Windows, breaking tests on a Windows desktop but not usually
on CL

¢ Documentation fixes (thanks to @mara004)

2.35 v12.2.0

¢ Fixed invalid Tesseract version number on Windows (#795).

* Documentation tweaks. Documentation build now depends on sphinx-issues package.

2.36 v12.1.0

* For security reasons we now require Pillow >= 8.2.x. (Older versions will continue to work if upgrading is not
an option.)

* The build system was reorganized to rely on setup.cfg instead of setup.py. All changes should work with
previously supported versions of setuptools.

e The files in requirements/* are now considered deprecated but will be retained for v12. Instead use pip
install ocrmypdf[test] instead of requirements/test.txt, etc. These files will be removed in v13.

14 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/821
https://github.com/ocrmypdf/OCRmyPDF/issues/815
https://github.com/ocrmypdf/OCRmyPDF/issues/816
https://github.com/ocrmypdf/OCRmyPDF/issues/813
https://github.com/ocrmypdf/OCRmyPDF/issues/802
https://github.com/ocrmypdf/OCRmyPDF/issues/795

ocrmypdf Documentation, Release 14.1.0

2.37 v12.0.3

» Expand the list of languages supported by the hocr PDF renderer. Several languages were previously considered
not supported, particularly those non-European languages that use the Latin alphabet.

* Fixed a case where the exception stack trace was suppressed in verbose mode.

* Improved documentation around commercial OCR.

2.38 v12.0.2

* Fixed exception thrown when using --remove-background on files containing small images (#769).

* Improve documentation for description of adding language packs to the Docker image and corrected name of
French language pack.

2.39 v12.0.1

* Fixed “invalid version number” for untagged tesseract versions (#770).

2.40 v12.0.0

Breaking changes

* Due torecent security issues in pikepdf, Pillow and reportlab, we now require newer versions of these libraries and
some of their dependencies. (If necessary, package maintainers may override these versions at their discretion;
lower versions will often work.)

* We now use the “LeaveColorUnchanged” color conversion strategy when directing Ghostscript to create a
PDF/A. Generally this is faster than performing a color conversion, which is not always necessary.

* OCR text is now packaged in a Form XObject. This makes it easier to isolate OCR from other document content.
However, some poorly implemented PDF text extraction algorithms may fail to detect the text.

* Many API functions have stricter parameter checking or expect keyword arguments were they previously did not.
* Some deprecated functions in ocrmypdf.optimize were removed.

* The ocrmypdf.leptonica module is now deprecated, due to difficulties with the current strategy of ABI bind-
ing on newer platforms like Apple Silicon. It will be removed and replaced, either by repackaging Leptonica as
an independent library using or using a different image processing library.

* Continuous integration moved to GitHub Actions.
* We no longer depend on pytest_helpers_namespace for testing.
New features

* New plugin hook: get_progressbar_class, for progress reporting, allowing developers to replace the stan-
dard console progress bar with some other mechanism, such as updating a GUI progress bar.

* New plugin hook: get_executor, for replacing the concurrency model. This is primarily to support execution
on AWS Lambda, which does not support standard Python multiprocessing due to its lack of shared memory.

* New plugin hook: get_logging_console, for replacing the standard way OCRmyPDF outputs its messages.

2.37. v12.0.3 15

https://github.com/ocrmypdf/OCRmyPDF/issues/769
https://github.com/ocrmypdf/OCRmyPDF/issues/770

ocrmypdf Documentation, Release 14.1.0

Fixes

New plugin hook: filter_pdf_page, for modifying individual PDF pages produced by OCRmyPDF.

OCRmyPDF now runs on nonstandard execution environments that do not have interprocess semaphores, such
as AWS Lambda and Android Termux. If the environment does not have semaphores, OCRmyPDF will auto-
matically select an alternate process executor that does not use semaphores.

Continuous integration moved to GitHub Actions.

We now generate an ARM64-compatible Docker image alongside the x64 image. Thanks to @andkrause for
doing most of the work in a pull request several months ago, which we were finally able to integrate now. Also
thanks to @0x326 for review comments.

Fixed a possible deadlock on attempting to flush sys. stderr when older versions of Leptonica are in use.

Some worker processes inherited resources from their parents such as log handlers that may have also lead to
deadlocks. These resources are now released.

Improvements to test coverage.

Removed vestiges of support for Tesseract versions older than 4.0.0-betal (which ships with Ubuntu 18.04).
OCRmyPDF can now parse all of Tesseract version numbers, since several schemes have been in use.

Fixed an issue with parsing PDFs that contain images drawn at a scale of 0. (#761)

Removed a frequently repeated message about disabling mmap.

2.41 v11.7.3

Exclude CCITT Group 3 images from being optimized. Some libraries OCRmyPDF uses do not seem to handle
this obscure compression format properly. You may get errors or possible corrupted output images without this
fix.

2.42 vi11.7.2

Updated pinned versions in main.txt, primarily to upgrade Pillow to 8.1.2, due to recently disclosed security
vulnerabilities in that software.

The --sidecar parameter now causes an exception if set to the same file as the input or output PDF.

2.43 vi1.7.1

Some exceptions while attempting image optimization were only logged at the debug level, causing them to be
suppressed. These errors are now logged appropriately.

Improved the error message related to --unpaper-args.

Updated documentation to mention the new conda distribution.

16

Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/761

ocrmypdf Documentation, Release 14.1.0

2.44 vi11.7.0

* We now support using --sidecar in conjunction with --pages; these arguments used to be mutually exclusive.
(#735)

* Fixed a possible issue with PDF/A-1b generation. Acrobat complained that our PDFs use object streams. More
robust PDF/A validators like veraPDF don’t consider this a problem, but we’ll honor Acrobat’s objection from
here on. This may increase file size of PDF/A-1b files. PDF/A-2b files will not be affected.

2.45 v11.6.2

* Fixed aregression where the wrong page orientation would be produced when using arguments such as --deskew
--rotate-pages (#730).

2.46 v11.6.1

* Fixed an issue with attempting optimize unusually narrow-width images by excluding these images from opti-
mization (#732).

* Remove an obsolete compatibility shim for a version of pikepdf that is no longer supported.

2.47 v11.6.0

¢ OCRmyPDF will now automatically register plugins from the same virtual environment with an appropriate
setuptools entrypoint.

» Refactor the plugin manager to remove unnecessary complications and make plugin registration more automatic.

* PageContext and PdfContext are now formally part of the API, as they should have been, since they were part
of ocrmypdf.pluginspec.

2.48 v11.5.0

» Fixed an issue where the output page size might differ by a fractional amount due to rounding, when
--force-ocr was used and the page contained objects with multiple resolutions.

* When determining the resolution at which to rasterize a page, we now consider printed text on the page as re-
quiring a higher resolution. This fixes issues with certain pages being rendered with unacceptably low resolution
text, but may increase output file sizes in some workflows where low resolution text is acceptable.

¢ Added a workaround to fix an exception that occurs when trying to import ocrmypdf.leptonica on Apple
ARM silicon (or potentially, other platforms that do not permit write+executable memory).

2.44. v11.7.0 17

https://github.com/ocrmypdf/OCRmyPDF/issues/735
https://github.com/ocrmypdf/OCRmyPDF/issues/730
https://github.com/ocrmypdf/OCRmyPDF/issues/732

ocrmypdf Documentation, Release 14.1.0

2.49 vi11.4.5

* Fixed an issue where files may not be closed when the API is used.

e Improved setup.cfg with better settings for test coverage.
p p.c1g g g

2.50 vi1.4.4

e Fixed AttributeError: 'NoneType' object has no attribute 'userunit' (#700), related to
OCRmyPDF not properly forwarded an error message from pdfminer.six.

* Adjusted typing of some arguments.

¢ ocrmypdf.ocr now takes a threading.Lock for reasons outlined in the documentation.

2.51 v11.4.3

* Removed a redundant debug message.
* Test suite now asserts that most patched functions are called when they should be.

* Test suite now skips a test that fails on two particular versions of piekpdf.

2.52 vi11.4.2

* Fixed support for Cygwin, hopefully.
 watcher.py: Fixed an issue with the OCR_LOGLEVEL not being interpreted.

2.53 vi1.4.1

* Fixed an issue where invalid pages ranges passed using the pages argument, such as “1-0” would cause unhandled
exceptions.

* Accepted a user-contributed to the Synology demo script in misc/synology.py.

Clarified documentation about change of temporary file location ocrmypdf. io.

* Fixed Python wheel tag which was incorrectly set to py35 even though we long since dropped support for Python
3.5.

18 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/700

ocrmypdf Documentation, Release 14.1.0

2.54 vi11.4.0

When looking for Tesseract and Ghostscript, we now check the Windows Registry to see if their installers reg-
istered the location of their executables. This should help Windows users who have installed these programs to
non-standard locations.

We now report on the progress of PDF/A conversion, since this operation is sometimes slow.
Improved command line completions.

The prefix of the temporary folder OCRmyPDF creates has been changed from com.github.ocrmypdf to
ocrmypdf.io. Scripts that chose to depend on this prefix may need to be adjusted. (This has always been
an implementation detail so is not considered part of the semantic versioning “contract”.)

Fixed #692, where a particular file with malformed fonts would flood an internal message cue by generating so
many debug messages.

Fixed an exception on processing hOCR files with no page record. Tesseract is not known to generate such files.

2.55 v11.3.4

Fixed an error message ‘called readLinearizationData for file that is not linearized’ that may occur when pikepdf
2.1.0 is used. (Upgrading to pikepdf 2.1.1 also fixes the issue.)

File watcher now automatically includes .PDF in addition to .pdf to better support case sensitive file systems.

Some documentation and comment improvements.

2.56 v11.3.3

If unpaper outputs non-UTF-8 data, quietly fix this rather than choke on the conversion. (Possibly addresses
#671.)

2.57 v11.3.2

Explicitly require pikepdf 2.0.0 or newer when running on Python 3.9. (There are concerns about the stability
of pybind11 2.5.x with Python 3.9, which is used in pikepdf 1.x.)

Fixed another issue related to page rotation.
Fixed an issue where image marked as image masks were not properly considered as optimization candidates.

On some systems, unpaper seems to be unable to process the PNGs we offer it as input. We now convert the
input to PNM format, which unpaper always accepts. Fixes #6065 and #667.

DPI sent to unpaper is now rounded to a more reasonable number of decimal digits.
Debug and error messages from unpaper were being suppressed.

Some documentation tweaks.

2.54.

v11.4.0 19

https://github.com/ocrmypdf/OCRmyPDF/issues/692
https://github.com/ocrmypdf/OCRmyPDF/issues/671
https://github.com/ocrmypdf/OCRmyPDF/issues/665
https://github.com/ocrmypdf/OCRmyPDF/issues/667

ocrmypdf Documentation, Release 14.1.0

2.58 v11.3.1

* Declare support for new versions: pdfminer.six 20201018 and pikepdf 2.x

* Fixed warning related to --pdfa-image-compression that appears at the wrong time.

2.59 v11.3.0

The “OCR” step is describing as “Image processing” in the output messages when OCR is disabled, to better
explain the application’s behavior.

Debug logs are now only created when run as a command line, and not when OCR is performed for an API call.
It is the calling application’s responsibility to set up logging.

For PDFs with a low number of pages, we gathered information about the input PDF in a thread rather than
process (when there are more pages). When run as a thread, we did not close the file handle to the working PDF,
leaking one file handle per call of ocrmypdf.ocr.

Fixed an issue where debug messages send by child worker processes did not match the log settings of parent
process, causing messages to be dropped. This affected macOS and Windows only where the parent process is
not forked.

Fixed the hookspec of rasterize_pdf_page to remove default parameters that were not handled in an expected way
by pluggy.

Fixed another issue with automatic page rotation (#658) due to the issue above.

2.60 vi1.2.1

* Fixed an issue where optimization of a 1-bit image with a color palette or associated ICC that was optimized to

JBIG2 could have its colors inverted.

2.61 v11.2.0

* Fixed an issue with optimizing PNG-type images that had soft masks or image masks. This is a regression

introduced in (or about) v11.1.0.

 Improved type checking of the plugins parameter for the ocrmypdf.ocr API call.

2.62 vi11.1.2

* Fixed hOCR renderer writing the text in roughly reverse order. This should not affect reasonably smart PDF

readers that properly locate the position of all text, but may confuse those that rely on the order of objects in the
content stream. (#642)

20

Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/658
https://github.com/ocrmypdf/OCRmyPDF/issues/642

ocrmypdf Documentation, Release 14.1.0

2.63 vii.1.1

* We now avoid using named temporary files when using pngquant allowing containerized pngquant installs to be
used.

* Clarified an error message.

* Highest number of 1’s in a release ever!

2.64 vi11.1.0

* Fixed page rotation issues: #634#589.
* Fixed some cases where optimization created an invalid image such as a 1-bit “RGB” image: #629#620.
» Page numbers are now displayed in debug logs when pages are being grafted.

* ocrmypdf.optimize.rewrite_png and ocrmypdf.optimize.rewrite_png_as_g4 were marked deprecated. Strictly
speaking these should have been internal APIs, but they were never hidden.

* As a precaution, pikepdf mmap-based file access has been disabled due to a rare race condition that causes a
crash when certain objects are deallocated. The problem is likely in pikepdf’s dependency pybind11.

» Extended the example plugin to demonstrate conversion to mono.

2.65 v11.0.2

* Fixed #612, TypeError exception. Fixed by eliminating unnecessary repair of input PDF metadata in memory.

2.66 v11.0.1

¢ Blacklist pdfminer.six 20200720, which has a regression fixed in 20200726.
* Approve img2pdf 0.4 as it passes tests.

¢ Clarify that the GPL-3 portion of pdfa.py was removed with the changes in v11.0.0; the debian/copyright file did
not properly annotate this change.

2.67 v11.0.0

* Project license changed to Mozilla Public License 2.0. Some miscellaneous code is now under MIT license and
non-code content/media remains under CC-BY-SA 4.0. License changed with approval of all people who were
found to have contributed to GPLv3 licensed sections of the project. (#600)

» Because the license changed, this is being treated as a major version number change; however, there are no known
breaking changes in functional behavior or API compared to v10.x.

2.63. v11.1.1 21

https://github.com/ocrmypdf/OCRmyPDF/issues/634
https://github.com/ocrmypdf/OCRmyPDF/issues/589
https://github.com/ocrmypdf/OCRmyPDF/issues/629
https://github.com/ocrmypdf/OCRmyPDF/issues/620
https://github.com/ocrmypdf/OCRmyPDF/issues/612
https://github.com/ocrmypdf/OCRmyPDF/issues/600

ocrmypdf Documentation, Release 14.1.0

2.68 v10.3.3

* Fixed a “KeyError: ‘dpi’” error message when using --threshold on an image. (#607)

2.69 v10.3.2

* Fixed a case where we reported “no reason” for a file size increase, when we could determine the reason.

* Enabled support for pdfminer.six 20200726.

2.70 v10.3.1

* Fixed a number of test suite failures with pdfminer.six older than version 20200402.

* Enabled support for pdfminer.six 20200720.

2.71 v10.3.0

* Fixed an issue where we would consider images that were already JBIG2-encoded for optimization, potentially
producing a less optimized image than the original. We do not believe this issue would ever cause an image to
loss fidelity.

* Where available, pikepdf memory mapping is now used. This improves performance.

* When Leptonica 1.79+ is installed, use its new error handling API to avoid a “messy” redirection of stderr which
was necessary to capture its error messages.

* For older versions of Leptonica, added a new thread level lock. This fixes a possible race condition in handling
error conditions in Leptonica (although there is no evidence it ever caused issues in practice).

* Documentation improvements and more type hinting.

2.72 v10.2.1

Disabled calculation of text box order with pdfminer. We never needed this result and it is expensive to calculate
on files with complex pre-existing text.

* Fixed plugin manager to accept Path(plugin) as a path to a plugin.
* Fixed some typing errors.

* Documentation improvements.

22 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/607

ocrmypdf Documentation, Release 14.1.0

2.73 v10.2.0

» Update Docker image to use Ubuntu 20.04.
* Fixed issue PDF/A acquires title “Untitled” after conversion. (#582)

* Fixed a problem where, when using --pdf-renderer hocr, some text would be missing from the output when
using a more recent version of Tesseract. Tesseract began adding more detailed markup about the semantics of
text that our HOCR transform did not recognize, so it ignored them. This option is not the default. If necessary
--redo-ocr also redoing OCR to fix such issues.

* Fixed an error in Python 3.9 beta, due to removal of deprecated Element.getchildren(). (#584)

* Implemented support using the API with BytesIO and other file stream objects. (#545)

2.74 v10.1.1

 Fixed OMP_THREAD_LIMIT set to invalid value error messages on some input files. (The error was harmless,
apart from less than optimal performance in some cases.)

2.75 v10.1.0

* Previously, we --clean-final would cause an unpaper-cleaned page image to be produced twice, which was
necessary in some cases but not in general. We now take this optimization opportunity and reuse the image if
possible.

* We now provide PNG files as input to unpaper, since it accepts them, instead of generating PPM files which can
be very large. This can improve performance and temporary disk usage.

* Documentation updated for plugins.

2.76 v10.0.1

* Fixed regression when -1 langl+lang2 is used from command line.

2.77 v10.0.0

Breaking changes

* Support for pdfminer.six version 20181108 has been dropped, along with a monkeypatch that made this version
work.

¢ Output messages are now displayed in color (when supported by the terminal) and prefixes describing the severity
of the message are removed. As such programs that parse OCRmyPDF’s log message will need to be revised.
(Please consider using OCRmyPDF as a library instead.)

* The minimum version for certain dependencies has increased.
* Many API changes; see developer changes.
* The Python libraries pluggy and coloredlogs are now required.

New features and improvements

2.73. v10.2.0 23

https://github.com/ocrmypdf/OCRmyPDF/issues/582
https://github.com/ocrmypdf/OCRmyPDF/issues/584
https://github.com/ocrmypdf/OCRmyPDF/issues/545

ocrmypdf Documentation, Release 14.1.0

PDF page scanning is now parallelized across CPUs, speeding up this phase dramatically for files with a high
page counts.

PDF page scanning is optimized, addressing some performance regressions.
PDF page scanning is no longer run on pages that are not selected when the --pages argument is used.

PDF page scanning is now independent of Ghostscript, ending our past reliance on this occasionally unstable
feature in Ghostscript.

A plugin architecture has been added, currently allowing one to more easily use a different OCR engine or PDF
renderer from Tesseract and Ghostscript, respectively. A plugin can also override some decisions, such changing
the OCR settings after initial scanning.

Colored log messages.

Developer changes

The test spoofing mechanism, used to test correct handling of failures in Tesseract and Ghostscript, has been
removed in favor of using plugins for testing. The spoofing mechanism was fairly complex and required many
special hacks for Windows.

Code describing the resolution in DPI of images was refactored into a ocrmypdf.helpers.Resolution class.
The module ocrmypdf._exec is now private to OCRmyPDF.
The ocrmypdf.hocrtransform module has been updated to follow PEP8 naming conventions.

Ghostscript is no longer used for finding the location of text in PDFs, and APIs related to this feature have been
removed.

Lots of internal reorganization to support plugins.

2.78 v9.8.2

Fixed an issue where OCRmyPDF would ignore text inside Form XObject when making certain decisions about
whether a document already had text.

Fixed file size increase warning to take overhead of small files into account.

Added instructions for installing on Cygwin.

2.79 v9.8.1

Fixed an issue where unexpected files in the %PROGRAMFILES%\gs directory (Windows) caused an exception.
Mark pdfminer.six 20200517 as supported.

If jbig2enc is missing and optimization is requested, a warning is issued instead of an error, which was the
intended behavior.

Documentation updates.

24

Chapter 2. Release notes

ocrmypdf Documentation, Release 14.1.0

2.80 v9.8.0

* Fixed issue where only the first PNG (FlateDecode) image in a file would be considered for optimization. File
sizes should be improved from here on.

* Fixed a startup crash when the chosen language was Japanese (#543).

* Added options to configure polling and log level to watcher.py.

2.81 v9.7.2

* Fixed an issue with ocrmypdf.ocr(. . .language=) not accepting a list of languages as documented.

» Updated setup.py to confirm that pdfminer.six version 20200402 is supported.

2.82 v9.7.1

* Fixed version check failing when used with qpdf 10.0.0.
* Added some missing type annotations.

» Updated documentation to warn about need for “ifmain” guard and Windows.

2.83 v9.7.0

* Fixed an error in watcher.py if OCR_JSON_SETTINGS was not defined.
* Ghostscript 9.51 is now blacklisted, due to numerous problems with this version.
* Added a workaround for a problem with “txtwrite” in Ghostscript 9.52.

* Fixed an issue where the incorrect number of threads used was shown when OMP_THREAD_LIMIT was manipu-
lated.

* Removed a possible performance bottlenecks for files that use hundreds to thousands of images on the same page.
* Documentation improvements.

¢ Optimization will now be applied to some monochrome images that have a color profile defined instead of only
black and white.

* ICC profiles are consulted when determining the simplified colorspace of an image.

2.84 v9.6.1

* Documentation improvements - thanks to many users for their contributions!

Fixed installation instructions for ArchLinux (@pigmonkey)

Updated installation instructions for FreeBSD and other OSes (@knobix)

Added instructions for using Docker Compose with watchdog (@ianalexander, @deisi)

Other miscellany (@mb720, @toy, @caiofacchinato)

2.80. v9.8.0 25

https://github.com/ocrmypdf/OCRmyPDF/issues/543

ocrmypdf Documentation, Release 14.1.0

— Some scripts provided in the documentation have been migrated out so that they can be copied out as whole
files, and to ensure syntax checking is maintained.

* Fixed an error that caused bash completions to fail on macOS. (#502#504; @ AlexanderWillner)

* Fixed a rare case where OCRmyPDF threw an exception while processing a PDF with the wrong object type in
its /Trailer /Info. The error is now logged and incorrect object is ignored. (#497)

* Removed potentially non-free file enronl.pdf and simplified the test that used it.

* Removed potentially non-free file misc/media/logo.afdesign.

2.85 v9.6.0

* Fixed a regression with transferring metadata from the input PDF to the output PDF in certain situations.
* pdfminer.six is now supported up to version 2020-01-24.

* Messages are explaining page rotation decisions are now shown at the standard verbosity level again when
--rotate-pages. In some previous version they were set to debug level messages that only appeared with
the parameter -v1.

* Improvements to misc/watcher.py. Thanks to @ianalexander and @svenihoney.

* Documentation improvements.

2.86 v9.5.0

* Added API functions to measure OCR quality.

¢ Modest improvements to handling PDFs with difficult/non compliant metadata.

2.87 v9.4.0

» Updated recommended dependency versions.

» Improvements to test coverage and changes to facilitate better measurement of test coverage, such as when tests
run in subprocesses.

* Improvements to error messages when Leptonica is not installed correctly.
* Fixed use of pytest “session scope” that may have caused some intermittent CI failures.

e When the argument --keep-temporary-files or verbosity is set to -v1, a debug log file is generated in the
working temporary folder.

26 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/502
https://github.com/ocrmypdf/OCRmyPDF/issues/504
https://github.com/ocrmypdf/OCRmyPDF/issues/497

ocrmypdf Documentation, Release 14.1.0

2.88 v9.3.0

* Improved native Windows support: we now check in the obvious places in the “Program Files” folders installa-
tions of Tesseract and Ghostscript, rather than relying on the user to edit PATH to specify their location. The PATH
environment variable can still be used to differentiate when multiple installations are present or the programs are
installed to non- standard locations.

* Fixed an exception on parsing Ghostscript error messages.

¢ Added an improved example demonstrating how to set up a watched folder for automated OCR processing (thanks
to @ianalexander for the contribution).

2.89 v9.2.0

» Native Windows is now supported.
* Continuous integration moved to Azure Pipelines.
» Improved test coverage and speed of tests.

* Fixed an issue where a page that was originally a JPEG would be saved as a PNG, increasing file size. This
occurred only when a preprocessing option was selected along with --output-type=pdf and all images on the
original page were JPEGs. Regression since v7.0.0.

* OCRmyPDF no longer depends on the QPDF executable qpdf or 1ibgpdf. It uses pikepdf (which in turn
depends on 1ibgpdf). Package maintainers should adjust dependencies so that OCRmyPDF no longer calls for
libqpdf on its own. For users of Python binary wheels, this change means a separate installation of QPDF is no
longer necessary. This change is mainly to simplify installation on Windows.

* Fixed a rare case where log messages from Tesseract would be discarded.

e Fixed incorrect function signature for pixFindPageForeground, causing exceptions on certain plat-
forms/Leptonica versions.

2.90 v9.1.1

» Expand the range of pdfminer.six versions that are supported.
¢ Fixed Docker build when using pikepdf 1.7.0.

¢ Fixed documentation to recommend using pip from get-pip.py.

2.91 v9.1.0

» Improved diagnostics when file size increases at output. Now warns if JBIG2 or pngquant were not available.

* pikepdf 1.7.0 is now required, to pick up changes that remove the need for a source install on Linux systems
running Python 3.8.

2.88. v9.3.0 27

ocrmypdf Documentation, Release 14.1.0

2.92 v9.0.5

The Alpine Docker image (jbarlow83/ocrmypdf-alpine) has been dropped due to the difficulties of supporting
Alpine Linux.

The primary Docker image (jbarlow83/ocrmypdf) has been improved to take on the extra features that used to be
exclusive to the Alpine image.

No changes to application code.

pdfminer.six version 20191020 is now supported.

2.93 v9.0.4

Fixed compatibility with Python 3.8 (but requires source install for the moment).
Fixed Tesseract settings for --user-words and --user-patterns.

Changed to pikepdf 1.6.5 (for Python 3.8).

Changed to Pillow 6.2.0 (to mitigate a security vulnerability in earlier Pillow).

A debug message now mentions when English is automatically selected if the locale is not English.

2.94 v9.0.3

* Embed an encoded version of the SRGB ICC profile in the intermediate Postscript file (used for PDF/A con-

version). Previously we included the filename, which required Postscript to run with file access enabled. For
security, Ghostscript 9.28 enables ~dSAFER and as such, no longer permits access to any file by default. This fix
is necessary for compatibility with Ghostscript 9.28.

* Exclude a test that sometimes times out and fails in continuous integration from the standard test suite.

2.95 v9.0.2

The image optimizer now skips optimizing flate (PNG) encoded images in some situations where the optimization
effort was likely wasted.

The image optimizer now ignores images that specify arbitrary decode arrays, since these are rare.

Fixed an issue that caused inversion of black and white in monochrome images. We are not certain but the
problem seems to be linked to Leptonica 1.76.0 and older.

Fixed some cases where the test suite failed if English or German Tesseract language packs were not installed.
Fixed a runtime error if the Tesseract English language is not installed.

Improved explicit closing of Pillow images after use.

Actually fixed of Alpine Docker image build.

Changed to pikepdf 1.6.3.

28

Chapter 2. Release notes

ocrmypdf Documentation, Release 14.1.0

2.96 v9.0.1

Fixed test suite failing when either of optional dependencies unpaper and pngquant were missing.
Attempted fix of Alpine Docker image build.
Documented that FreeBSD ports are now available.

Changed to pikepdf 1.6.1.

2.97 v9.0.0

Breaking changes

The --mask-barcodes experimental feature has been dropped due to poor reliability and occasional crashes,
both due to the underlying library that implements this feature (Leptonica).

The -v (verbosity level) parameter now accepts only 0, 1, and 2.
Dropped support for Tesseract 4.00.00-alpha releases. Tesseract 4.0 beta and later remain supported.

Dropped the ocrmypdf-polyglot and ocrmypdf-webservice images.

New features

Added a high level API for applications that want to integrate OCRmyPDF. Special thanks to Martin Wind
(@mawil988) whose made significant contributions to this effort.

Added progress bars for long-running steps.

We now create linearized (“fast web view”) PDFs by default. The new parameter --fast-web-view provides
control over when this feature is applied.

Added a new --pages feature to limit OCR to only a specific page range. The list may contain commas or single
pages, suchas 1, 3, 5-11.

When the number of pages is small compared to the number of allowed jobs, we run Tesseract in multithreaded
(OpenMP) mode when available. This should improve performance on files with low page counts.

Removed dependency on ruffus, and with that, the non-reentrancy restrictions that previous made an API
impossible.

Output and logging messages overhauled so that ocrmypdf may be integrated into applications that use the log-
ging module.

pikepdf 1.6.0 is required.
Added a logo.

Bug fixes

Pages with vector artwork are treated as full color. Previously, vectors were ignored when considering the col-
orspace needed to cover a page, which could cause loss of color under certain settings.

Test suite now spawns processes less frequently, allowing more accurate measurement of code coverage.
Improved test coverage.

Fixed a rare division by zero (if optimization produced an invalid file).

Updated Docker images to use newer versions.

Fixed images encoded as JBIG2 with a colorspace other than /DeviceGray were not interpreted correctly.

2.96.

v9.0.1 29

ocrmypdf Documentation, Release 14.1.0

* Fixed a OCR text-image registration (i.e. alignment) problem when the page when MediaBox had a nonzero
corner.

2.98 v8.3.2

* Dropped workaround for macOS that allowed it work without pdfminer.six, now a proper sdist release of
pdfminer.six is available.

¢ pikepdf 1.5.0 is now required.

2.99 v8.3.1

* Fixed an issue where PDFs with malformed metadata would be rendered as blank pages. #398.

2.100 v8.3.0

* Improved the strategy for updating pages when a new image of the page was produced. We now attempt to
preserve more content from the original file, for annotations in particular.

» For PDFs with more than 100 pages and a sequence where one PDF page was replaced and one or more subse-
quent ones were skipped, an intermediate file would be corrupted while grafting OCR text, causing processing
to fail. This is a regression, likely introduced in v8.2.4.

* Previously, we resized the images produced by Ghostscript by a small number of pixels to ensure the output
image size was an exactly what we wanted. Having discovered a way to get Ghostscript to produce the exact
image sizes we require, we eliminated the resizing step.

* Command line completions for bash are now available, in addition to f£ish, bothinmisc/completion. Package
maintainers, please install these so users can take advantage.

» Updated requirements.

¢ pikepdf 1.3.0 is now required.

2.101 v8.2.4

* Fixed a false positive while checking for a certain type of PDF that only Acrobat can read. We now more
accurately detect Acrobat-only PDFs.

* OCRmyPDF holds fewer open file handles and is more prompt about releasing those it no longer needs.

e Minor optimization: we no longer traverse the table of contents to ensure all references in it are resolved, as
changes to libgpdf have made this unnecessary.

¢ pikepdf 1.2.0 is now required.

30 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/398

ocrmypdf Documentation, Release 14.1.0

2.102 v8.2.3

* Fixed that --mask-barcodes would occasionally leave a unwanted temporary file named junkpixt in the
current working folder.

* Fixed (hopefully) handling of Leptonica errors in an environment where a non-standard sys. stderr is present.

* Improved help text for --verbose.

2.103 v8.2.2

* Fixed a regression from v8.2.0, an exception that occurred while attempting to report that unpaper or another
optional dependency was unavailable.

¢ In some cases, ocrmypdf [-c|--clean] failed to exit with an error when unpaper is not installed.

2.104 v8.2.1

¢ This release was canceled.

2.105 v8.2.0

* A major improvement to our Docker image is now available thanks to hard work contributed by @mawil2345.
The new Docker image, ocrmypdf-alpine, is based on Alpine Linux, and includes most of the functionality of
three existed images in a smaller package. This image will replace the main Docker image eventually but for now
all are being built. See documentation for details.

* Documentation reorganized especially around the use of Docker images.

* Fixed a problem with PDF image optimization, where the optimizer would unnecessarily decompress and recom-
press PNG images, in some cases losing the benefits of the quantization it just had just performed. The optimizer
is now capable of embedding PNG images into PDFs without transcoding them.

* Fixed a minor regression with lossy JBIG2 image optimization. All JBIG2 candidates images were incorrectly
placed into a single optimization group for the whole file, instead of grouping pages together. This usually
makes a larger JBIG2Globals dictionary and results in inferior compression, so it worked less well than designed.
However, quality would not be impacted. Lossless JBIG2 was entirely unaffected.

» Updated dependencies, including pikepdf to 1.1.0. This fixes #358.

 The install-time version checks for certain external programs have been removed from setup.py. These tests are
now performed at run-time.

* The non-standard option to override install-time checks (setup.py install --force)is now deprecated and
prints a warning. It will be removed in a future release.

2.102. v8.2.3 31

https://ocrmypdf.readthedocs.io/en/latest/docker.html
https://github.com/ocrmypdf/OCRmyPDF/issues/358

ocrmypdf Documentation, Release 14.1.0

2.106 v8.1.0

Added a feature, --unpaper-args, which allows passing arbitrary arguments to unpaper when using --clean
or --clean-final. The default, very conservative unpaper settings are suppressed.

The argument --clean-final now implies --clean. It was possible to issue --clean-final on its before
this, but it would have no useful effect.

Fixed an exception on traversing corrupt table of contents entries (specifically, those with invalid destination
objects)

Fixed an issue when using --tesseract-timeout and image processing features on a file with more than 100
pages. #347

OCRmyPDF now always calls os.nice(5) to signal to operating systems that it is a background process.

2.107 v8.0.1

Fixed an exception when parsing PDFs that are missing a required field. #325

pikepdf 1.0.5 is now required, to address some other PDF parsing issues.

2.108 v8.0.0

No major features. The intent of this release is to sever support for older versions of certain dependencies.

Breaking changes

Dropped support for Tesseract 3.x. Tesseract 4.0 or newer is now required.
Dropped support for Python 3.5.

Some ocrmypdf.pdfa APIs that were deprecated in v7.x were removed. This functionality has been moved to
pikepdf.

Other changes

Fixed an unhandled exception when attempting to mask barcodes. #322

It is now possible to use ocrmypdf without pdfminer.six, to support distributions that do not have it or cannot
currently use it (e.g. Homebrew). Downstream maintainers should include pdfminer.six if possible.

A warning is now issue when PDF/A conversion removes some XMP metadata from the input PDF. (Only a
“whitelist” of certain XMP metadata types are allowed in PDF/A.)

Fixed several issues that caused PDF/As to be produced with nonconforming XMP metadata (would fail valida-
tion with veraPDF).

Fixed some instances where invalid DocumentInfo from a PDF cause XMP metadata creation to fail.
Fixed a few documentation problems.

pikepdf 1.0.2 is now required.

32

Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/347
https://github.com/ocrmypdf/OCRmyPDF/issues/325
https://github.com/ocrmypdf/OCRmyPDF/issues/322

ocrmypdf Documentation, Release 14.1.0

2.109 v7.4.0

* --force-ocr may now be used with the new --threshold and --mask-barcodes features
¢ pikepdf >=0.9.1 is now required.

¢ Changed metadata handling to pikepdf 0.9.1. As a result, metadata handling of non-ASCII characters in
Ghostscript 9.25 or later is fixed.

e chardet >= 3.0.4 is temporarily listed as required. pdfminer.six depends on it, but the most recent release does
not specify this requirement. (#326)

* python-xmp-toolkit and libexempi are no longer required.

* A new Docker image is now being provided for users who wish to access OCRmyPDF over a simple HTTP
interface, instead of the command line.

¢ Increase tolerance of PDFs that overflow or underflow the PDF graphics stack. (#325)

2.110 v7.3.1

* Fixed performance regression from v7.3.0; fast page analysis was not selected when it should be.
* Fixed a few exceptions related to the new --mask-barcodes feature and improved argument checking

* Added missing detection of TrueType fonts that lack a Unicode mapping

2.111 v7.3.0

¢ Added a new feature --redo-ocr to detect existing OCR in a file, remove it, and redo the OCR. This may
be particularly helpful for anyone who wants to take advantage of OCR quality improvements in Tesseract 4.0.
Note that OCR added by OCRmyPDF before version 3.0 cannot be detected since it was not properly marked
as invisible text in the earliest versions. OCR that constructs a font from visible text, such as Adobe Acrobat’s
ClearScan.

¢ OCRmyPDF’s content detection is generally more sophisticated. It learns more about the contents of each PDF
and makes better recommendations:

— OCRmyPDF can now detect when a PDF contains text that cannot be mapped to Unicode (meaning it is
readable to human eyes but copy-pastes as gibberish). In these cases it recommends --force-ocr to make
the text searchable.

— PDFs containing vector objects are now rendered at more appropriate resolution for OCR.

— We now exit with an error for PDFs that contain Adobe LiveCycle Designer’s dynamic XFA forms. Cur-
rently the open source community does not have tools to work with these files.

— OCRmyPDF now warns when a PDF that contains Adobe AcroForms, since such files probably do not need
OCR. It can work with these files.

* Added three new experimental features to improve OCR quality in certain conditions. The name, syntax and
behavior of these arguments is subject to change. They may also be incompatible with some other features.

— --remove-vectors which strips out vector graphics. This can improve OCR quality since OCR will not
search artwork for readable text; however, it currently removes “text as curves” as well.

— --mask-barcodes to detect and suppress barcodes in files. We have observed that barcodes can interfere
with OCR because they are “text-like” but not actually textual.

2.109. v7.4.0 33

https://github.com/ocrmypdf/OCRmyPDF/issues/326
https://github.com/ocrmypdf/OCRmyPDF/issues/325

ocrmypdf Documentation, Release 14.1.0

— --threshold which uses a more sophisticated thresholding algorithm than is currently in use in Tesseract
OCR. This works around a known issue in Tesseract 4.0 with dark text on bright backgrounds.

* Fixed an issue where an error message was not reported when the installed Ghostscript was very old.

* The PDF optimizer now saves files with object streams enabled when the optimization level is --optimize 1
or higher (the default). This makes files a little bit smaller, but requires PDF 1.5. PDF 1.5 was first released
in 2003 and is broadly supported by PDF viewers, but some rudimentary PDF parsers such as PyPDF2 do not
understand object streams. You can use the command line tool qpdf --object-streams=disable or pikepdf
library to remove them.

¢ New dependency: pdfminer.six 20181108. Note this is a fork of the Python 2-only pdfminer.

* Deprecation notice: At the end of 2018, we will be ending support for Python 3.5 and Tesseract 3.x. OCRmyPDF
v7 will continue to work with older versions.

2.112 v7.2.1

* Fixed compatibility with an API change in pikepdf 0.3.5.

* A kludge to support Leptonica versions older than 1.72 in the test suite was dropped. Older versions of Leptonica
are likely still compatible. The only impact is that a portion of the test suite will be skipped.

2.113 v7.2.0

Lossy JBIG2 behavior change

A user reported that ocrmypdf was in fact using JBIG2 in lossy compression mode. This was not the intended behavior.
Users should review the technical concerns with JBIG2 in lossy mode and decide if this is a concern for their use case.

JBIG?2 lossy mode does achieve higher compression ratios than any other monochrome compression technology; for
large text documents the savings are considerable. JBIG2 lossless still gives great compression ratios and is a major
improvement over the older CCITT G4 standard.

Only users who have reviewed the concerns with JBIG2 in lossy mode should opt-in. As such, lossy mode JBIG?2 is
only turned on when the new argument --jbig2-lossy is issued. This is independent of the setting for --optimize.

Users who did not install an optional JBIG2 encoder are unaffected.
(Thanks to user ‘bsdice’ for reporting this issue.)
Other issues

* When the image optimizer quantizes an image to 1 bit per pixel, it will now attempt to further optimize that image
as CCITT or JBIG2, instead of keeping it in the “flate” encoding which is not efficient for 1 bpp images. (#297)

 Images in PDFs that are used as soft masks (i.e. transparency masks or alpha channels) are now excluded from
optimization.

* Fixed handling of Tesseract 4.0-rc1 which now accepts invalid Tesseract configuration files, which broke the test
suite.

34 Chapter 2. Release notes

https://github.com/tesseract-ocr/tesseract/issues/1990
https://github.com/pikepdf/pikepdf
https://abbyy.technology/en:kb:tip:jbig2_compression_and_ocr
https://github.com/ocrmypdf/OCRmyPDF/issues/297

ocrmypdf Documentation, Release 14.1.0

2114 v7.1.0

* Improve the performance of initial text extraction, which is done to determine if a file contains existing text of
some kind or not. On large files, this initial processing is now about 20x times faster. (#299)

* pikepdf 0.3.3 is now required.

* Fixed #231, a problem with JPEG2000 images where image metadata was only available inside the JPEG2000
file.

* Fixed some additional Ghostscript 9.25 compatibility issues.
* Improved handling of KeyboardInterrupt error messages. (#301)

¢ README.md is now served in GitHub markdown instead of reStructuredText.

2.115 v7.0.6

* Blacklist Ghostscript 9.24, now that 9.25 is available and fixes many regressions in 9.24.

2.116 v7.0.5

* Improve capability with Ghostscript 9.24, and enable the JPEG passthrough feature when this version in installed.

* Ghostscript 9.24 lost the ability to set PDF title, author, subject and keyword metadata to Unicode strings.
OCRmyPDF will set ASCII strings and warn when Unicode is suppressed. Other software may be used to
update metadata. This is a short term work around.

* PDFs generated by Kodak Capture Desktop, or generally PDFs that contain indirect references to null objects
in their table of contents, would have an invalid table of contents after processing by OCRmyPDF that might
interfere with other viewers. This has been fixed.

» Detect PDFs generated by Adobe LiveCycle, which can only be displayed in Adobe Acrobat and Reader currently.
When these are encountered, exit with an error instead of performing OCR on the “Please wait” error message

page.

2.117 v7.0.4

* Fixed exception thrown when trying to optimize a certain type of PNG embedded in a PDF with the -02

» Update to pikepdf 0.3.2, to gain support for optimizing some additional image types that were previously excluded
from optimization (CMYK and grayscale). Fixes #285.

2.114. v7.1.0 35

https://github.com/ocrmypdf/OCRmyPDF/issues/299
https://github.com/ocrmypdf/OCRmyPDF/issues/231
https://github.com/ocrmypdf/OCRmyPDF/issues/301
https://github.com/ocrmypdf/OCRmyPDF/issues/285

ocrmypdf Documentation, Release 14.1.0

2.118 v7.0.3

* Fixed #284, an error when parsing inline images that have are also image masks, by upgrading pikepdf to 0.3.1

2.119 v7.0.2

* Fixed a regression with --rotate-pages on pages that already had rotations applied. (#279)

» Improve quality of page rotation in some cases by rasterizing a higher quality preview image. (#281)

2.120 v7.0.1

* Fixed compatibility with img2pdf >= 0.3.0 by rejecting input images that have an alpha channel
* Add forward compatibility for pikepdf 0.3.0 (unrelated to img2pdf)

* Various documentation updates for v7.0.0 changes

2.121 v7.0.0

* The core algorithm for combining OCR layers with existing PDF pages has been rewritten and improved con-

siderably. PDFs are no longer split into single page PDFs for processing; instead, images are rendered and the
OCR results are grafted onto the input PDF. The new algorithm uses less temporary disk space and is much more
performant especially for large files.

New dependency: pikepdf. pikepdfis a powerful new Python PDF library driving the latest OCRmyPDF features,
built on the QPDF C++ library (libgpdf).

New feature: PDF optimization with -0 or --optimize. After OCR, OCRmyPDF will perform image opti-
mizations relevant to OCR PDFs.

— If a JBIG2 encoder is available, then monochrome images will be converted, with the potential for huge
savings on large black and white images, since JBIG2 is far more efficient than any other monochrome
(bi-level) compression. (All known US patents related to JBIG2 have probably expired, but it remains the
responsibility of the user to supply a JBIG2 encoder such as jbig2enc. OCRmyPDF does not implement
JBIG2 encoding.)

— If pngquant is installed, OCRmyPDF will optionally use it to perform lossy quantization and compression
of PNG images.

— The quality of JPEGs can also be lowered, on the assumption that a lower quality image may be suitable
for storage after OCR.

— This image optimization component will eventually be offered as an independent command line utility.

— Optimization ranges from -00 through -03, where 0 disables optimization and 3 implements all options.
1, the default, performs only safe and lossless optimizations. (This is similar to GCC’s optimization pa-
rameter.) The exact type of optimizations performed will vary over time.

Small amounts of text in the margins of a page, such as watermarks, page numbers, or digital stamps, will no
longer prevent the rest of a page from being OCRed when --skip-text is issued. This behavior is based on a
heuristic.

¢ Removed features

36

Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/284
https://github.com/ocrmypdf/OCRmyPDF/issues/279
https://github.com/ocrmypdf/OCRmyPDF/issues/281
https://github.com/pikepdf/pikepdf
https://github.com/agl/jbig2enc

ocrmypdf Documentation, Release 14.1.0

— The deprecated --pdf-renderer tesseract PDF renderer was removed.

— -g, the option to generate debug text pages, was removed because it was a maintenance burden and only
worked in isolated cases. HOCR pages can still be previewed by running the hocrtransform.py with appro-
priate settings.

* Removed dependencies
— PyPDF2
— defusedxml
— PyMuPDF

* The sandwich PDF renderer can be used with all supported versions of Tesseract, including that those prior to
v3.05 which don’t support -c textonly. (Tesseract v4.0.0 is recommended and more efficient.)

e --pdf-renderer auto option and the diagnostics used to select a PDF renderer now work better with old
versions, but may make different decisions than past versions.

e If everything succeeds but PDF/A conversion fails, a distinct return code is now returned
(ExitCode.pdfa_conversion_failed (10)) where this situation previously returned ExitCode.
invalid_output_pdf (4). The latter is now returned only if there is some indication that the output
file is invalid.

* Notes for downstream packagers
— There is also a new dependency on python-xmp-toolkit which in turn depends on 1libexempi3.

— It may be necessary to separately pip install pycparser to avoid another Python 3.7 issue.

2.122 v6.2.5

* Disable a failing test due to Tesseract 4.0rcl behavior change. Previously, Tesseract would exit with an error
message if its configuration was invalid, and OCRmyPDF would intercept this message. Now Tesseract issues a
warning, which OCRmyPDF v6.2.5 may relay or ignore. (In v7.x, OCRmyPDF will respond to the warning.)

* This release branch no longer supports using the optional PyMuPDF installation, since it was removed in v7.x.

* This release branch no longer supports macOS. macOS users should upgrade to v7.x.

2.123 v6.2.4

» Backport Ghostscript 9.25 compatibility fixes, which removes support for setting Unicode metadata
* Backport blacklisting Ghostscript 9.24

* QOlder versions of Ghostscript are still supported

2.122. v6.2.5 37

https://github.com/eliben/pycparser/pull/135

ocrmypdf Documentation, Release 14.1.0

2.124 v6.2.3

* Fixed compatibility with img2pdf >= 0.3.0 by rejecting input images that have an alpha channel

¢ This version will be included in Ubuntu 18.10

2.125 v6.2.2

* Backport compatibility fixes for Python 3.7 and ruffus 2.7.0 from v7.0.0
» Backport fix to ignore masks when deciding what colors are on a page

* Backport some minor improvements from v7.0.0: better argument validation and warnings about the Tesseract
4.0.0 --user-words regression

2.126 v6.2.1

* Fixed recent versions of Tesseract (after 4.0.0-betal) not being detected as supporting the sandwich renderer
(#271).

2.127 v6.2.0

* Docker: The Docker image ocrmypdf-tess4 has been removed. The main Docker images, ocrmypdf and
ocrmypdf-polyglot now use Ubuntu 18.04 as a base image, and as such Tesseract 4.0.0-betal is now the
Tesseract version they use. There is no Docker image based on Tesseract 3.05 anymore.

* Creation of PDF/A-3 is now supported. However, there is no ability to attach files to PDF/A-3.
* Lists more reasons why the file size might grow.
¢ Fixed #262, --remove-background error on PDFs contained colormapped (paletted) images.

* Fixed another XMP metadata validation issue, in cases where the input file’s creation date has no timezone and
the creation date is not overridden.

2.128 v6.1.5

* Fixed #253, a possible division by zero when using the hocr renderer.

¢ Fixed incorrectly formatted <xmp : ModifyDate> field inside XMP metadata for PDF/As. veraPDF flags this as
a PDF/A validation failure. The error is caused the timezone and final digit of the seconds of modified time to
be omitted, so at worst the modification time stamp is rounded to the nearest 10 seconds.

38 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/271
https://github.com/ocrmypdf/OCRmyPDF/issues/262
https://github.com/ocrmypdf/OCRmyPDF/issues/253

ocrmypdf Documentation, Release 14.1.0

2.129 v6.1.4

* Fixed #248 --clean argument may remove OCR from left column of text on certain documents. We now set
--layout none to suppress this.

* The test cache was updated to reflect the change above.
* Change test suite to accommodate Ghostscript 9.23’s new ability to insert JPEGs into PDFs without transcoding.
* XMP metadata in PDFs is now examined using defusedxml for safety.

« If an external process exits with a signal when asked to report its version, we now print the system error message
instead of suppressing it. This occurred when the required executable was found but was missing a shared library.

* gpdf 7.0.0 or newer is now required as the test suite can no longer pass without it.

2.129.1 Notes

e Anapparent regression in Ghostscript 9.23 will cause some ocrmypdf output files to become invalid in rare cases;
the workaround for the moment is to set --force-ocr.

2.130 v6.1.3

 Fixed #247, /CreationDate metadata not copied from input to output.

* A warning is now issued when Python 3.5 is used on files with a large page count, as this case is known to regress
to single core performance. The cause of this problem is unknown.

2.131 v6.1.2

¢ Upgrade to PyMuPDF v1.12.5 which includes a more complete fix to #239.
* Add defusedxml dependency.

2.132 v6.1.1

* Fixed text being reported as found on all pages if PyMuPDF is not installed.

2.133 v6.1.0

* PyMuPDF is now an optional but recommended dependency, to alleviate installation difficulties on platforms
that have less access to PyMuPDF than the author anticipated. (For version 6.x only) install OCRmyPDF with
pip install ocrmypdf[fitz] to use it to its full potential.

* Fixed FileExistsError that could occur if OCR timed out while it was generating the output file. (#218)

* Fixed table of contents/bookmarks all being redirected to page 1 when generating a PDF/A (with PyMuPDF).
(Without PyMuPDF the table of contents is removed in PDF/A mode.)

¢ Fixed “RuntimeError: invalid key in dict” when table of contents/bookmarks titles contained the character).
(#239)

2.129. v6.1.4 39

https://github.com/ocrmypdf/OCRmyPDF/issues/248
https://bugs.ghostscript.com/show_bug.cgi?id=699216
https://github.com/ocrmypdf/OCRmyPDF/issues/247
https://github.com/ocrmypdf/OCRmyPDF/issues/239
https://github.com/ocrmypdf/OCRmyPDF/issues/218
https://github.com/ocrmypdf/OCRmyPDF/issues/239

ocrmypdf Documentation, Release 14.1.0

* Added a new argument --skip-repair to skip the initial PDF repair step if the PDF is already well-formed

(because another program repaired it).

2.134 v6.0.0

The software license has been changed to GPLv3 [it has since changed again]. Test resource files and some
individual sources may have other licenses.

OCRmyPDF now depends on PyMuPDF. Including PyMuPDF is the primary reason for the change to GPLv3.

Other backward incompatible changes

The OCRMYPDF_TESSERACT, OCRMYPDF_QPDF, OCRMYPDF_GS and OCRMYPDF_UNPAPER environment vari-
ables are no longer used. Change PATH if you need to override the external programs OCRmyPDF uses.

The ocrmypdf package has been moved to src/ocrmypdf to avoid issues with accidental import.

The function ocrmypdf.exec.get_program was removed.

The deprecated module ocrmypdf.pageinfo was removed.

The --pdf-renderer tess4 alias for sandwich was removed.

Fixed an issue where OCRmyPDF failed to detect existing text on pages, depending on how the text and fonts
were encoded within the PDF. (#233#232)

Fixed an issue that caused dramatic inflation of file sizes when --skip-text --output-type pdf was used.
OCRmyPDF now removes duplicate resources such as fonts, images and other objects that it generates. (#237)

Improved performance of the initial page splitting step. Originally this step was not believed to be expensive and
ran in a process. Large file testing revealed it to be a bottleneck, so it is now parallelized. On a 700 page file with
quad core machine, this change saves about 2 minutes. (#234)

The test suite now includes a cache that can be used to speed up test runs across platforms. This also does not
require computing checksums, so it’s faster. (#217)

2.135 v5.7.0

* Fixed an issue that caused poor CPU utilization on machines with more than 4 cores when running Tesseract 4.

(Related to #217.)

* The ‘hocr’ renderer has been improved. The ‘sandwich’ and ‘tesseract’ renderers are still better for most use

cases, but ‘hocr’ may be useful for people who work with the PDF.js renderer in English/ASCII languages.
(#225)

— It now formats text in a matter that is easier for certain PDF viewers to select and extract copy and paste
text. This should help macOS Preview and PDF.js in particular.

— The appearance of selected text and behavior of selecting text is improved.

— The PDF content stream now uses relative moves, making it more compact and easier for viewers to deter-
mine when two words on the same line.

— It can now deal with text on a skewed baseline.

— Thanks to @cforcey for the pull request, @jbreiden for many helpful suggestions, @ctbarbour for another
round of improvements, and @acaloiaro for an independent review.

40

Chapter 2. Release notes

https://pymupdf.readthedocs.io/en/latest/installation/
https://github.com/ocrmypdf/OCRmyPDF/issues/233
https://github.com/ocrmypdf/OCRmyPDF/issues/232
https://github.com/ocrmypdf/OCRmyPDF/issues/237
https://github.com/ocrmypdf/OCRmyPDF/issues/234
https://github.com/ocrmypdf/OCRmyPDF/issues/217
https://github.com/ocrmypdf/OCRmyPDF/issues/217
https://github.com/ocrmypdf/OCRmyPDF/issues/225

ocrmypdf Documentation, Release 14.1.0

2.136 v5.6.3

* Suppress two debug messages that were too verbose

2.137 v5.6.2

* Development branch accidentally tagged as release. Do not use.

2.138 v5.6.1

* Fixed #219: change how the final output file is created to avoid triggering permission errors when the output is
a special file such as /dev/null

* Fixed test suite failures due to a qpdf 8.0.0 regression and Python 3.5’s handling of symlink

¢ The “encrypted PDF” error message was different depending on the type of PDF encryption. Now a single clear
message appears for all types of PDF encryption.

* ocrmypdfis now in Homebrew. Homebrew users are advised to the version of ocrmypdf in the official homebrew-
core formulas rather than the private tap.

* Some linting

2.139 v5.6.0

* Fixed #216: preserve “text as curves” PDFs without rasterizing file
» Related to the above, messages about rasterizing are more consistent

* For consistency versions minor releases will now get the trailing .0 they always should have had.

2.140 v5.5

* Add new argument --max-image-mpixels. Pillow 5.0 now raises an exception when images may be decom-
pression bombs. This argument can be used to override the limit Pillow sets.

* Fixed output page cropped when using the sandwich renderer and OCR is skipped on a rotated and image-
processed page

* A warning is now issued when old versions of Ghostscript are used in cases known to cause issues with non-Latin
characters

* Fixed a few parameter validation checks for -output-type pdfa-1 and pdfa-2

2.136. v5.6.3 41

https://github.com/ocrmypdf/OCRmyPDF/issues/219
https://github.com/ocrmypdf/OCRmyPDF/issues/216

ocrmypdf Documentation, Release 14.1.0

2.141 v5.4.4

» Fixed #181: fix final merge failure for PDFs with more pages than the system file handle limit (ulimit -n)

¢ Fixed #200: an uncommon syntax for formatting decimal numbers in a PDF would cause qpdf to issue a warning,
which ocrmypdf treated as an error. Now this the warning is relayed.

* Fixed an issue where intermediate PDFs would be created at version 1.3 instead of the version of the original
file. It’s possible but unlikely this had side effects.

* A warning is now issued when older versions of qpdf are used since issues like #200 cause qpdf to infinite-loop

* Address issue #140: if Tesseract outputs invalid UTF-8, escape it and print its message instead of aborting with
a Unicode error

* Adding previously unlisted setup requirement, pytest-runner

» Update documentation: fix an error in the example script for Synology with Docker images, improved security
guidance, advised pip install --user

2.142 v5.4.3

* If a subprocess fails to report its version when queried, exit cleanly with an error instead of throwing an exception
* Added test to confirm that the system locale is Unicode-aware and fail early if it’s not
¢ Clarified some copyright information

» Updated pinned requirements.txt so the homebrew formula captures more recent versions

2.143 v5.4.2

* Fixed a regression from v5.4.1 that caused sidecar files to be created as empty files

2.144 v5.4.1

* Add workaround for Tesseract v4.00alpha crash when trying to obtain orientation and the latest language packs
are installed

2.145 v5.4

* Change wording of a deprecation warning to improve clarity

* Added option to generate PDF/A-1b output if desired (--output-type pdfa-1); default remains PDF/A-2b
generation

» Update documentation

42 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/181
https://github.com/ocrmypdf/OCRmyPDF/issues/200
https://github.com/ocrmypdf/OCRmyPDF/issues/200
https://github.com/ocrmypdf/OCRmyPDF/issues/140

ocrmypdf Documentation, Release 14.1.0

2.146 v5.3.3

* Fixed missing error message that should occur when trying to force --pdf-renderer sandwich on old versions
of Tesseract

 Update copyright information in test files

 Set system LANG to UTF-8 in Dockerfiles to avoid UTF-8 encoding errors

2.147 v5.3.2

* Fixed a broken test case related to language packs

2.148 v5.3.1

* Fixed wrong return code given for missing Tesseract language packs

* Fixed “brew audit” crashing on Travis when trying to auto-brew

2.149 v5.3

* Added --user-words and --user-patterns arguments which are forwarded to Tesseract OCR as words and
regular expressions respective to use to guide OCR. Supplying a list of subject-domain words should assist
Tesseract with resolving words. (#165)

» Using a non Latin-1 language with the “hocr” renderer now warns about possible OCR quality and recommends
workarounds (#176)

* Qutput file path added to error message when that location is not writable (#175)

» Otherwise valid PDFs with leading whitespace at the beginning of the file are now accepted

2.150 v5.2

* When using Tesseract 3.05.01 or newer, OCRmyPDF will select the “sandwich” PDF renderer by default, unless
another PDF renderer is specified with the --pdf-renderer argument. The previous behavior was to select
--pdf-renderer=hocr.

» The “tesseract” PDF renderer is now deprecated, since it can cause problems with Ghostscript on Tesseract
3.05.00

* The “tess4” PDF renderer has been renamed to “sandwich”. “tess4” is now a deprecated alias for “sandwich”.

2.146. v5.3.3 43

https://github.com/ocrmypdf/OCRmyPDF/issues/165
https://github.com/ocrmypdf/OCRmyPDF/issues/176
https://github.com/ocrmypdf/OCRmyPDF/issues/175

ocrmypdf Documentation, Release 14.1.0

2.151 v5.1

* Files with pages larger than 200” (5080 mm) in either dimension are now supported with --output-type=pdf
with the page size preserved (in the PDF specification this feature is called UserUnit scaling). Due to Ghostscript
limitations this is not available in conjunction with PDF/A output.

2.152 v5.0.1

* Fixed #169, exception due to failure to create sidecar text files on some versions of Tesseract 3.04, including the
jbarlow83/ocrmypdf Docker image

2.153 v5.0

* Backward incompatible changes
— Support for Python 3.4 dropped. Python 3.5 is now required.

— Support for Tesseract 3.02 and 3.03 dropped. Tesseract 3.04 or newer is required. Tesseract 4.00 (alpha) is
supported.

— The OCRmyPDF:.sh script was removed.

¢ Add a new feature, --sidecar, which allows creating “sidecar” text files which contain the OCR results in plain
text. These OCR text is more reliable than extracting text from PDFs. Closes #126.

* New feature: --pdfa-image-compression, which allows overriding Ghostscript’s lossy-or-lossless image en-
coding heuristic and making all images JPEG encoded or lossless encoded as desired. Fixes #163.

» Fixed #143, added --quiet to suppress “INFO” messages
* Fixed #164, a typo

* Removed the command line parameters -n and --just-print since they have not worked for some time (re-
ported as Ubuntu bug #1687308)

2.154 v4.5.6

 Fixed #156, ‘NoneType’ object has no attribute ‘getObject’ on pages with no optional /Contents record. This
should resolve all issues related to pages with no /Contents record.

* Fixed #158, ocrmypdf now stops and terminates if Ghostscript fails on an intermediate step, as it is not possible
to proceed.

* Fixed #160, exception thrown on certain invalid arguments instead of error message

44 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/169
https://github.com/ocrmypdf/OCRmyPDF/issues/126
https://github.com/ocrmypdf/OCRmyPDF/issues/163
https://github.com/ocrmypdf/OCRmyPDF/issues/143
https://github.com/ocrmypdf/OCRmyPDF/issues/164
https://bugs.launchpad.net/ubuntu/+source/ocrmypdf/+bug/1687308
https://github.com/ocrmypdf/OCRmyPDF/issues/156
https://github.com/ocrmypdf/OCRmyPDF/issues/158
https://github.com/ocrmypdf/OCRmyPDF/issues/160

ocrmypdf Documentation, Release 14.1.0

2.155 v4.5.5

* Automated update of macOS homebrew tap

* Fixed #154, KeyError ‘/Contents” when searching for text on blank pages that have no /Contents record. Note:
incomplete fix for this issue.

2.156 v4.5.4

* Fixed --skip-big raising an exception if a page contains no images (#152) (thanks to @ TomRaz)

* Fixed an issue where pages with no images might trigger “cannot write mode P as JPEG” (#151)

2.157 v4.5.3

* Added a workaround for Ghostscript 9.21 and probably earlier versions would fail with the error message “VMer-
ror -25”, due to a Ghostscript bug in XMP metadata handling

* High Unicode characters (U+10000 and up) are no longer accepted for setting metadata on the command line,
as Ghostscript may not handle them correctly.

¢ Fixed an issue where the tess4 renderer would duplicate content onto output pages if tesseract failed or timed
out

* Fixed tess4 renderer not recognized when lossless reconstruction is possible

2.158 v4.5.2

* Fixed #147, --pdf-renderer tess4 --clean will produce an oversized page containing the original image
in the bottom left corner, due to loss DPI information.

¢ Make “using Tesseract 4.0” warning less ominous

* Set up machinery for homebrew OCRmyPDF tap

2.159 v4.5.1

 Fixed #137, proportions of images with a non-square pixel aspect ratio would be distorted in output for
--force-ocr and some other combinations of flags

2.155. v4.5.5 45

https://github.com/ocrmypdf/OCRmyPDF/issues/154
https://github.com/ocrmypdf/OCRmyPDF/issues/152
https://github.com/ocrmypdf/OCRmyPDF/issues/151
https://github.com/ocrmypdf/OCRmyPDF/issues/147
https://github.com/ocrmypdf/OCRmyPDF/issues/137

ocrmypdf Documentation, Release 14.1.0

2.160 v4.5

* PDFs containing “Form XObjects” are now supported (issue #134; PDF reference manual 8.10), and images they
contain are taken into account when determining the resolution for rasterizing

» The Tesseract 4 Docker image no longer includes all languages, because it took so long to build something would
tend to fail

* OCRmyPDF now warns about using --pdf-renderer tesseract with Tesseract 3.04 or lower due to issues
with Ghostscript corrupting the OCR text in these cases

2.161 v4.4.2

* The Docker images (ocrmypdf, ocrmypdf-polyglot, ocrmypdf-tess4) are now based on Ubuntu 16.10 instead of
Debian stretch

— This makes supporting the Tesseract 4 image easier

— This could be a disruptive change for any Docker users who built customized these images with their own
changes, and made those changes in a way that depends on Debian and not Ubuntu

¢ OCRmyPDF now prevents running the Tesseract 4 renderer with Tesseract 3.04, which was permitted in v4.4
and v4.4.1 but will not work

2.162 v4.4.1

» To prevent a TIFF output error caused by img2pdf >=0.2.1 and Pillow <=3.4.2, dependencies have been tightened

* The Tesseract 4.00 simultaneous process limit was increased from 1 to 2, since it was observed that 1 lowers
performance

* Documentation improvements to describe the --tesseract-config feature
* Added test cases and fixed error handling for --tesseract-config

» Tweaks to setup.py to deal with issues in the v4.4 release

2.163 v4.4

* Tesseract 4.00 is now supported on an experimental basis.

— A new rendering option --pdf-renderer tess4 exploits Tesseract 4’s new text-only output PDF mode.
See the documentation on PDF Renderers for details.

— The --tesseract-oem argument allows control over the Tesseract 4 OCR engine mode (tesseract’s
--oem). Use --tesseract-oem 2 to enforce the new LSTM mode.

— Fixed poor performance with Tesseract 4.00 on Linux
* Fixed an issue that caused corruption of output to stdout in some cases

* Removed test for Pillow JPEG and PNG support, as the minimum supported version of Pillow now enforces this

OCRmyPDF now tests that the intended destination file is writable before proceeding

* The test suite now requires pytest-helpers-namespace to run (but not install)

46 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/134
https://github.com/python-pillow/Pillow/issues/2206

ocrmypdf Documentation, Release 14.1.0

* Significant code reorganization to make OCRmyPDF re-entrant and improve performance. All changes should
be backward compatible for the v4.x series.

— However, OCRmyPDF’s dependency “ruffus” is not re-entrant, so no Python API is available. Scripts
should continue to use the command line interface.

2.164 v4.3.5

» Update documentation to confirm Python 3.6.0 compatibility. No code changes were needed, so many earlier
versions are likely supported.

2.165 v4.3.4

* Fixed “decimal.InvalidOperation: quantize result has too many digits” for high DPI images

2.166 v4.3.3

* Fixed PDF/A creation with Ghostscript 9.20 properly

* Fixed an exception on inline stencil masks with a missing optional parameter

2.167 v4.3.2

* Fixed a PDF/A creation issue with Ghostscript 9.20 (note: this fix did not actually work)

2.168 v4.3.1

* Fixed an issue where pages produced by the “hocr” renderer after a Tesseract timeout would be rotated incorrectly
if the input page was rotated with a /Rotate marker

* Fixed a file handle leak in LeptonicaErrorTrap that would cause a “too many open files” error for files around
hundred pages of pages long when --deskew or --remove-background or other Leptonica based image pro-
cessing features were in use, depending on the system value of ulimit -n

* Ability to specify multiple languages for multilingual documents is now advertised in documentation
* Reduced the file sizes of some test resources
¢ Cleaned up debug output

* Tesseract caching in test cases is now more cautious about false cache hits and reproducing exact output, not that
any problems were observed

2.164. v4.3.5 47

ocrmypdf Documentation, Release 14.1.0

2.169 v4.3

* New feature --remove-background to detect and erase the background of color and grayscale images
* Better documentation
¢ Fixed an issue with PDFs that draw images when the raster stack depth is zero
* ocrmypdf can now redirect its output to stdout for use in a shell pipeline
— This does not improve performance since temporary files are still used for buffering

— Some output validation is disabled in this mode

2.170 v4.2.5

* Fixed an issue (#100) with PDFs that omit the optional /BitsPerComponent parameter on images

* Removed non-free file milk.pdf

2171 v4.2.4

* Fixed an error (#90) caused by PDFs that use stencil masks properly

* Fixed handling of PDFs that try to draw images or stencil masks without properly setting up the graphics state
(such images are now ignored for the purposes of calculating DPI)

2172 v4.2.3

* Fixed an issue with PDFs that store page rotation (/Rotate) in an indirect object
* Integrated a few fixes to simplify downstream packaging (Debian)
— The test suite no longer assumes it is installed
— If running Linux, skip a test that passes Unicode on the command line
* Added a test case to check explicit masks and stencil masks
* Added a test case for indirect objects and linearized PDFs

* Deprecated the OCRmyPDE.sh shell script

2.173 v4.2.2

* Improvements to documentation

48 Chapter 2. Release notes

https://github.com/ocrmypdf/OCRmyPDF/issues/100
https://github.com/ocrmypdf/OCRmyPDF/issues/90

ocrmypdf Documentation, Release 14.1.0

2.174 v4.2.1

* Fixed an issue where PDF pages that contained stencil masks would report an incorrect DPI and cause Ghostscript
to abort

* Implemented stdin streaming

2.175 v4.2

* ocrmypdf will now try to convert single image files to PDFs if they are provided as input (#15)

— This is a basic convenience feature. It only supports a single image and always makes the image fill the
whole page.

— For better control over image to PDF conversion, use img2pdf (one of ocrmypdf’s dependencies)
e New argument --output-type {pdf|pdfa} allows disabling Ghostscript PDF/A generation
— pdfa is the default, consistent with past behavior

— pdf£ provides a workaround for users concerned about the increase in file size from Ghostscript forcing
JBIG2 images to CCITT and transcoding JPEGs

— pdf preserves as much as it can about the original file, including problems that PDF/A conversion fixes

* PDFs containing images with “non-square” pixel aspect ratios, such as 200x100 DPI, are now handled and
converted properly (fixing a bug that caused to be cropped)

» --force-ocr rasterizes pages even if they contain no images

— supports users who want to use OCRmyPDF to reconstruct text information in PDFs with damaged Unicode
maps (copy and paste text does not match displayed text)

— supports reinterpreting PDFs where text was rendered as curves for printing, and text needs to be recovered
— fixes issue #82

* Fixes an issue where, with certain settings, monochrome images in PDFs would be converted to 8-bit grayscale,
increasing file size (#79)

* Support for Ubuntu 12.04 LTS “precise” has been dropped in favor of (roughly) Ubuntu 14.04 LTS “trusty”
— Some Ubuntu “PPAs” (backports) are needed to make it work

* Support for some older dependencies dropped
— Ghostscript 9.15 or later is now required (available in Ubuntu trusty with backports)
— Tesseract 3.03 or later is now required (available in Ubuntu trusty)

* Ghostscript now runs in “safer” mode where possible

2.174. v4.21 49

https://github.com/ocrmypdf/OCRmyPDF/issues/15
https://github.com/ocrmypdf/OCRmyPDF/issues/82
https://github.com/ocrmypdf/OCRmyPDF/issues/79

ocrmypdf Documentation, Release 14.1.0

2.176 v4.1.4

* Bug fix: monochrome images with an ICC profile attached were incorrectly converted to full color images if
lossless reconstruction was not possible due to other settings; consequence was increased file size for these
images

2177 v41.3

* More helpful error message for PDFs with version 4 security handler
» Update usage instructions for Windows/Docker users

* Fixed order of operations for matrix multiplication (no effect on most users)

Add a few leptonica wrapper functions (no effect on most users)

2.178 v4.1.2

* Replace IEC sRGB ICC profile with Debian’s sSRGB (from icc-profiles-free) which is more compatible with the
MIT license

* More helpful error message for an error related to certain types of malformed PDFs

2.179 va.i

e --rotate-pages now only rotates pages when reasonably confidence in the orientation. This behavior can be
adjusted with the new argument --rotate-pages-threshold

* Fixed problems in error checking if unpaper is uninstalled or missing at run-time

* Fixed problems with “RethrownJobError” errors during error handling that suppressed the useful error messages

2.180 v4.0.7

* Minor correction to Ghostscript output settings

2.181 v4.0.6

 Update install instructions

* Provide a sSRGB profile instead of using Ghostscript’s

50 Chapter 2. Release notes

ocrmypdf Documentation, Release 14.1.0

2.182 v4.0.5

* Remove some verbose debug messages from v4.0.4
* Fixed temporary that wasn’t being deleted
* DPI is now calculated correctly for cropped images, along with other image transformations

* Inline images are now checked during DPI calculation instead of rejecting the image

2.183 v4.0.4

Released with verbose debug message turned on. Do not use. Skip to v4.0.5.

2.184 v4.0.3

New features
* Page orientations detected are now reported in a summary comment
Fixes
¢ Show stack trace if unexpected errors occur
* Treat “too few characters” error message from Tesseract as a reason to skip that page rather than abort the file

* Docker: fix blank JPEG2000 issue by insisting on Ghostscript versions that have this fixed

2.185 v4.0.2

Fixes

* Fixed compatibility with Tesseract 3.04.01 release, particularly its different way of outputting orientation infor-
mation

* Improved handling of Tesseract errors and crashes

¢ Fixed use of chmod on Docker that broke most test cases

2.186 v4.0.1

Fixes

* Fixed a KeyError if tesseract fails to find page orientation information

2.182. v4.0.5 51

ocrmypdf Documentation, Release 14.1.0

2.187 v4.0

New features

* Automatic page rotation (-r) is now available. It uses ignores any prior rotation information on PDFs and sets
rotation based on the dominant orientation of detectable text. This feature is fairly reliable but some false positives
occur especially if there is not much text to work with. (#4)

» Deskewing is now performed using Leptonica instead of unpaper. Leptonica is faster and more reliable at image
deskewing than unpaper.

Fixes

* Fixed an issue where lossless reconstruction could cause some pages to be appear incorrectly if the page was
rotated by the user in Acrobat after being scanned (specifically if it a /Rotate tag)

* Fixed an issue where lossless reconstruction could misalign the graphics layer with respect to text layer if the
page had been cropped such that its origin is not (0, 0) (#49)

Changes
* Logging output is now much easier to read
¢ --deskew is now performed by Leptonica instead of unpaper (#25)
* libffi is now required
* Some changes were made to the Docker and Travis build environments to support libffi

e --pdf-renderer=tesseract now displays a warning if the Tesseract version is less than 3.04.01, the planned
release that will include fixes to an important OCR text rendering bug in Tesseract 3.04.00. You can also manually
install ./share/sharp2.ttf on top of pdf.ttf in your Tesseract tessdata folder to correct the problem.

2.188 v3.2.1

Changes

* Fixed #47 “convert() got and unexpected keyword argument ‘dpi’” by upgrading to img2pdf 0.2
¢ Tweaked the Dockerfiles

2.189 v3.2

New features

* Lossless reconstruction: when possible, OCRmyPDF will inject text layers without otherwise manipulating the
content and layout of a PDF page. For example, a PDF containing a mix of vector and raster content would
see the vector content preserved. Images may still be transcoded during PDF/A conversion. (--deskew and
--clean-final disable this mod